Fahrsimulator_MSY2526_AI/EDA/owncloud.ipynb

158 lines
3.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "aab6b326-a583-47ad-8bb7-723c2fddcc63",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# %pip install pyocclient\n",
"import yaml\n",
"import owncloud\n",
"import pandas as pd\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4f42846c-27c3-4394-a40a-e22d73c2902e",
"metadata": {},
"outputs": [],
"source": [
"start = time.time()\n",
"\n",
"with open(\"../login.yaml\") as f:\n",
" cfg = yaml.safe_load(f)\n",
"url, password = cfg[0][\"url\"], cfg[1][\"password\"]\n",
"file = \"adabase-public-0022-v_0_0_2.h5py\"\n",
"oc = owncloud.Client.from_public_link(url, folder_password=password)\n",
"\n",
"\n",
"oc.get_file(file, \"tmp22.h5\")\n",
"\n",
"end = time.time()\n",
"print(end - start)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3714dec2-85d0-4f76-af46-ea45ebec2fa3",
"metadata": {},
"outputs": [],
"source": [
"start = time.time()\n",
"df_performance = pd.read_hdf(\"tmp22.h5\", \"PERFORMANCE\")\n",
"end = time.time()\n",
"print(end - start)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f50e97d0",
"metadata": {},
"outputs": [],
"source": [
"print(22)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c131c816",
"metadata": {},
"outputs": [],
"source": [
"df_performance"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6ae47e52-ad86-4f8d-b929-0080dc99f646",
"metadata": {},
"outputs": [],
"source": [
"start = time.time()\n",
"df_4_col = pd.read_hdf(\"tmp.h5\", \"SIGNALS\", mode=\"r\", columns=[\"STUDY\"], start=0, stop=1)\n",
"end = time.time()\n",
"print(end - start)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c139f3a-ede8-4530-957d-d1bb939f6cb5",
"metadata": {},
"outputs": [],
"source": [
"df_4_col.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a68d58ea-65f2-46c4-a2b2-8c3447c715d7",
"metadata": {},
"outputs": [],
"source": [
"df_4_col.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95aa4523-3784-4ab6-bf92-0227ce60e863",
"metadata": {},
"outputs": [],
"source": [
"df_4_col.info()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "defbcaf4-ad1b-453f-9b48-ab0ecfc4b5d5",
"metadata": {},
"outputs": [],
"source": [
"df_4_col.isna().sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "72313895-c478-44a5-9108-00b0bec01bb8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}