Fahrsimulator_MSY2526_AI/EDA/researchOnSubjectPerformance.ipynb
2025-11-10 11:31:42 +01:00

214 lines
6.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "8fb02733",
"metadata": {},
"source": [
"Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "96f3b128",
"metadata": {},
"outputs": [],
"source": [
"import yaml\n",
"import owncloud\n",
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"id": "c20cee7c",
"metadata": {},
"source": [
"Connection to Owncloud"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4c94558",
"metadata": {},
"outputs": [],
"source": [
"# Load credentials\n",
"with open(\"../login.yaml\") as f:\n",
" cfg = yaml.safe_load(f)\n",
" \n",
"url, password = cfg[0][\"url\"], cfg[1][\"password\"]\n",
"\n",
"# Connect once\n",
"oc = owncloud.Client.from_public_link(url, folder_password=password)\n",
"# File pattern\n",
"# base = \"adabase-public-{num:04d}-v_0_0_2.h5py\"\n",
"base = \"{num:04d}-*.h5py\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "07c03d07",
"metadata": {},
"outputs": [],
"source": [
"num_files = 2 # number of files to process (min: 1, max: 30)\n",
"performance_data = []\n",
"\n",
"for i in range(num_files):\n",
" file_pattern = f\"{i:04d}-*\"\n",
" \n",
" # Get list of files matching the pattern\n",
" files = oc.list('.')\n",
" matching_files = [f.get_name() for f in files if f.get_name().startswith(f\"{i:04d}-\")]\n",
" \n",
" if matching_files:\n",
" file_name = matching_files[0] # Take the first matching file\n",
" local_tmp = f\"tmp_{i:04d}.h5\"\n",
" \n",
" oc.get_file(file_name, local_tmp)\n",
" print(f\"{file_name} geöffnet\")\n",
" else:\n",
" print(f\"Keine Datei gefunden für Muster: {file_pattern}\")\n",
" # file_name = base.format(num=i)\n",
" # local_tmp = f\"tmp_{i:04d}.h5\"\n",
"\n",
" # oc.get_file(file_name, local_tmp)\n",
" # print(f\"{file_name} geöffnet\")\n",
"\n",
" # check SIGNALS table for AUs\n",
" with pd.HDFStore(local_tmp, mode=\"r\") as store:\n",
" cols = store.select(\"SIGNALS\", start=0, stop=1).columns\n",
" au_cols = [c for c in cols if c.startswith(\"AU\")]\n",
" if not au_cols:\n",
" print(f\"Subject {i} enthält keine AUs\")\n",
" continue\n",
"\n",
" # load performance table\n",
" with pd.HDFStore(local_tmp, mode=\"r\") as store:\n",
" perf_df = store.select(\"PERFORMANCE\")\n",
"\n",
" f1_cols = [c for c in [\"AUDITIVE F1\", \"VISUAL F1\", \"F1\"] if c in perf_df.columns]\n",
" if not f1_cols:\n",
" print(f\"Subject {i}: keine F1-Spalten gefunden\")\n",
" continue\n",
"\n",
" subject_entry = {\"subjectID\": i}\n",
" valid_scores = []\n",
"\n",
" # iterate rows: each (study, level, phase)\n",
" for _, row in perf_df.iterrows():\n",
" study, level, phase = row[\"STUDY\"], row[\"LEVEL\"], row[\"PHASE\"]\n",
" col_name = f\"STUDY_{study}_LEVEL_{level}_PHASE_{phase}\"\n",
"\n",
" # collect valid F1 values among the three columns\n",
" scores = [row[c] for c in f1_cols if pd.notna(row[c])]\n",
" if scores:\n",
" mean_score = float(np.mean(scores))\n",
" subject_entry[col_name] = mean_score\n",
" valid_scores.extend(scores)\n",
"\n",
" # compute overall average across all valid combinations\n",
" if valid_scores:\n",
" subject_entry[\"overall_score\"] = float(np.mean(valid_scores))\n",
" performance_data.append(subject_entry)\n",
" print(f\"Subject {i}: {len(valid_scores)} gültige Scores, Overall = {subject_entry['overall_score']:.3f}\")\n",
" else:\n",
" print(f\"Subject {i}: keine gültigen F1-Scores\")\n",
"\n",
"# build dataframe\n",
"if performance_data:\n",
" performance_df = pd.DataFrame(performance_data)\n",
" combination_cols = sorted([c for c in performance_df.columns if c.startswith(\"STUDY_\")])\n",
" final_cols = [\"subjectID\", \"overall_score\"] + combination_cols\n",
" performance_df = performance_df[final_cols]\n",
" performance_df.to_csv(\"n_au_performance.csv\", index=False)\n",
"\n",
" print(f\"\\nGesamt Subjects mit Action Units: {len(performance_df)}\")\n",
"else:\n",
" print(\"Keine gültigen Daten gefunden.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0bcaf065",
"metadata": {},
"outputs": [],
"source": [
"performance_df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "db95eea7",
"metadata": {},
"outputs": [],
"source": [
"with pd.HDFStore(\"tmp_0000.h5\", mode=\"r\") as store:\n",
" md = store.select(\"META\")\n",
"print(\"File 0:\")\n",
"print(md)\n",
"with pd.HDFStore(\"tmp_0001.h5\", mode=\"r\") as store:\n",
" md = store.select(\"META\")\n",
"print(\"File 1\")\n",
"print(md)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8067036b",
"metadata": {},
"outputs": [],
"source": [
"pd.set_option('display.max_columns', None)\n",
"pd.set_option('display.max_rows', None)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f18e7385",
"metadata": {},
"outputs": [],
"source": [
"with pd.HDFStore(\"tmp_0000.h5\", mode=\"r\") as store:\n",
" md = store.select(\"SIGNALS\", start=0, stop=1)\n",
"print(\"File 0:\")\n",
"md.head()\n",
"# with pd.HDFStore(\"tmp_0001.h5\", mode=\"r\",start=0, stop=1) as store:\n",
"# md = store.select(\"SIGNALS\")\n",
"# print(\"File 1\")\n",
"# print(md.columns)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}