176 lines
5.8 KiB
Python
176 lines
5.8 KiB
Python
import pickle
|
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler
|
|
import numpy as np
|
|
import os
|
|
|
|
def fit_normalizer(train_data, au_columns, method='standard', scope='global'):
|
|
"""
|
|
Fit normalization scalers on training data.
|
|
|
|
Parameters:
|
|
-----------
|
|
train_data : pd.DataFrame
|
|
Training dataframe with AU columns and subjectID
|
|
au_columns : list
|
|
List of AU column names to normalize
|
|
method : str, default='standard'
|
|
Normalization method: 'standard' for StandardScaler or 'minmax' for MinMaxScaler
|
|
scope : str, default='global'
|
|
Normalization scope: 'subject' for per-subject or 'global' for across all subjects
|
|
|
|
Returns:
|
|
--------
|
|
dict
|
|
Dictionary containing fitted scalers and statistics for new subjects
|
|
"""
|
|
if method == 'standard':
|
|
Scaler = StandardScaler
|
|
elif method == 'minmax':
|
|
Scaler = MinMaxScaler
|
|
else:
|
|
raise ValueError("method must be 'standard' or 'minmax'")
|
|
|
|
scalers = {}
|
|
if scope == 'subject':
|
|
# Fit one scaler per subject
|
|
subject_stats = []
|
|
|
|
for subject in train_data['subjectID'].unique():
|
|
subject_mask = train_data['subjectID'] == subject
|
|
scaler = Scaler()
|
|
scaler.fit(train_data.loc[subject_mask, au_columns].values)
|
|
scalers[subject] = scaler
|
|
|
|
# Store statistics for averaging
|
|
if method == 'standard':
|
|
subject_stats.append({
|
|
'mean': scaler.mean_,
|
|
'std': scaler.scale_
|
|
})
|
|
elif method == 'minmax':
|
|
subject_stats.append({
|
|
'min': scaler.data_min_,
|
|
'max': scaler.data_max_
|
|
})
|
|
|
|
# Calculate average statistics for new subjects
|
|
if method == 'standard':
|
|
avg_mean = np.mean([s['mean'] for s in subject_stats], axis=0)
|
|
avg_std = np.mean([s['std'] for s in subject_stats], axis=0)
|
|
fallback_scaler = StandardScaler()
|
|
fallback_scaler.mean_ = avg_mean
|
|
fallback_scaler.scale_ = avg_std
|
|
fallback_scaler.var_ = avg_std ** 2
|
|
fallback_scaler.n_features_in_ = len(au_columns)
|
|
elif method == 'minmax':
|
|
avg_min = np.mean([s['min'] for s in subject_stats], axis=0)
|
|
avg_max = np.mean([s['max'] for s in subject_stats], axis=0)
|
|
fallback_scaler = MinMaxScaler()
|
|
fallback_scaler.data_min_ = avg_min
|
|
fallback_scaler.data_max_ = avg_max
|
|
fallback_scaler.data_range_ = avg_max - avg_min
|
|
fallback_scaler.scale_ = 1.0 / fallback_scaler.data_range_
|
|
fallback_scaler.min_ = -avg_min * fallback_scaler.scale_
|
|
fallback_scaler.n_features_in_ = len(au_columns)
|
|
|
|
scalers['_fallback'] = fallback_scaler
|
|
|
|
elif scope == 'global':
|
|
# Fit one scaler for all subjects
|
|
scaler = Scaler()
|
|
scaler.fit(train_data[au_columns].values)
|
|
scalers['global'] = scaler
|
|
|
|
else:
|
|
raise ValueError("scope must be 'subject' or 'global'")
|
|
|
|
return {'scalers': scalers, 'method': method, 'scope': scope}
|
|
|
|
def apply_normalizer(data, columns, normalizer_dict):
|
|
"""
|
|
Apply fitted normalization scalers to data.
|
|
|
|
Parameters:
|
|
-----------
|
|
data : pd.DataFrame
|
|
Dataframe with AU columns and subjectID
|
|
au_columns : list
|
|
List of AU column names to normalize
|
|
normalizer_dict : dict
|
|
Dictionary containing fitted scalers from fit_normalizer()
|
|
|
|
Returns:
|
|
--------
|
|
pd.DataFrame
|
|
DataFrame with normalized AU columns
|
|
"""
|
|
normalized_data = data.copy()
|
|
scalers = normalizer_dict['scalers']
|
|
scope = normalizer_dict['scope']
|
|
normalized_data[columns] = normalized_data[columns].astype(np.float64)
|
|
|
|
if scope == 'subject':
|
|
# Apply per-subject normalization
|
|
for subject in data['subjectID'].unique():
|
|
subject_mask = data['subjectID'] == subject
|
|
|
|
# Use the subject's scaler if available, otherwise use fallback
|
|
if subject in scalers:
|
|
scaler = scalers[subject]
|
|
else:
|
|
# Use averaged scaler for new subjects
|
|
scaler = scalers['_fallback']
|
|
print(f"Info: Subject {subject} not in training data. Using averaged scaler from training subjects.")
|
|
|
|
normalized_data.loc[subject_mask, columns] = scaler.transform(
|
|
data.loc[subject_mask, columns].values
|
|
)
|
|
|
|
elif scope == 'global':
|
|
# Apply global normalization
|
|
scaler = scalers['global']
|
|
normalized_data[columns] = scaler.transform(data[columns].values)
|
|
|
|
return normalized_data
|
|
|
|
|
|
|
|
def save_normalizer(normalizer_dict, filepath):
|
|
"""
|
|
Save fitted normalizer to disk.
|
|
|
|
Parameters:
|
|
-----------
|
|
normalizer_dict : dict
|
|
Dictionary containing fitted scalers from fit_normalizer()
|
|
filepath : str
|
|
Path to save the normalizer (e.g., 'normalizer.pkl')
|
|
"""
|
|
# Create directory if it does not exist
|
|
dirpath = os.path.dirname(filepath)
|
|
if dirpath:
|
|
os.makedirs(dirpath, exist_ok=True)
|
|
|
|
with open(filepath, 'wb') as f:
|
|
pickle.dump(normalizer_dict, f)
|
|
|
|
print(f"Normalizer saved to {filepath}")
|
|
|
|
def load_normalizer(filepath):
|
|
"""
|
|
Load fitted normalizer from disk.
|
|
|
|
Parameters:
|
|
-----------
|
|
filepath : str
|
|
Path to the saved normalizer file
|
|
|
|
Returns:
|
|
--------
|
|
dict
|
|
Dictionary containing fitted scalers
|
|
"""
|
|
with open(filepath, 'rb') as f:
|
|
normalizer_dict = pickle.load(f)
|
|
print(f"Normalizer loaded from {filepath}")
|
|
return normalizer_dict |