Fahrsimulator_MSY2526_AI/EDA/owncloud.ipynb

537 lines
15 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "aab6b326-a583-47ad-8bb7-723c2fddcc63",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# %pip install pyocclient\n",
"import yaml\n",
"import owncloud\n",
"import pandas as pd\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "4f42846c-27c3-4394-a40a-e22d73c2902e",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"143.946026802063\n"
]
}
],
"source": [
"start = time.time()\n",
"\n",
"with open(\"../login.yaml\") as f:\n",
" cfg = yaml.safe_load(f)\n",
"url, password = cfg[0][\"url\"], cfg[1][\"password\"]\n",
"file = \"adabase-public-0022-v_0_0_2.h5py\"\n",
"oc = owncloud.Client.from_public_link(url, folder_password=password)\n",
"\n",
"\n",
"oc.get_file(file, \"tmp22.h5\")\n",
"\n",
"end = time.time()\n",
"print(end - start)\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "3714dec2-85d0-4f76-af46-ea45ebec2fa3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.5121121406555176\n"
]
}
],
"source": [
"start = time.time()\n",
"df_performance = pd.read_hdf(\"tmp22.h5\", \"PERFORMANCE\")\n",
"end = time.time()\n",
"print(end - start)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f50e97d0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"22\n"
]
}
],
"source": [
"print(22)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c131c816",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>STUDY</th>\n",
" <th>PHASE</th>\n",
" <th>LEVEL</th>\n",
" <th>AUDITIVE F1</th>\n",
" <th>AUDITIVE MEAN REACTION TIME</th>\n",
" <th>AUDITIVE PRECISION</th>\n",
" <th>AUDITIVE RECALL</th>\n",
" <th>VISUAL F1</th>\n",
" <th>VISUAL MEAN REACTION TIME</th>\n",
" <th>VISUAL PRECISION</th>\n",
" <th>VISUAL RECALL</th>\n",
" <th>F1</th>\n",
" <th>PRECISION</th>\n",
" <th>REACTION TIME</th>\n",
" <th>RECALL</th>\n",
" <th>SONGS RECALL</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>n-back</td>\n",
" <td>test</td>\n",
" <td>01</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1.000000</td>\n",
" <td>0.428068</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>n-back</td>\n",
" <td>test</td>\n",
" <td>02</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.928571</td>\n",
" <td>0.626869</td>\n",
" <td>1.000000</td>\n",
" <td>0.866667</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>n-back</td>\n",
" <td>test</td>\n",
" <td>03</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.640000</td>\n",
" <td>0.828912</td>\n",
" <td>0.727273</td>\n",
" <td>0.571429</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>n-back</td>\n",
" <td>test</td>\n",
" <td>04</td>\n",
" <td>1.000000</td>\n",
" <td>1.309286</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" <td>0.942916</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>n-back</td>\n",
" <td>test</td>\n",
" <td>05</td>\n",
" <td>0.782609</td>\n",
" <td>1.316484</td>\n",
" <td>0.818182</td>\n",
" <td>0.750000</td>\n",
" <td>0.814815</td>\n",
" <td>1.151405</td>\n",
" <td>0.916667</td>\n",
" <td>0.733333</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>n-back</td>\n",
" <td>test</td>\n",
" <td>06</td>\n",
" <td>0.363636</td>\n",
" <td>1.703583</td>\n",
" <td>0.500000</td>\n",
" <td>0.285714</td>\n",
" <td>0.476190</td>\n",
" <td>1.530054</td>\n",
" <td>0.714286</td>\n",
" <td>0.357143</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>k-drive</td>\n",
" <td>test</td>\n",
" <td>01</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1.000000</td>\n",
" <td>1.000000</td>\n",
" <td>0.446914</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>k-drive</td>\n",
" <td>test</td>\n",
" <td>02</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.914286</td>\n",
" <td>0.914286</td>\n",
" <td>0.702571</td>\n",
" <td>0.914286</td>\n",
" <td>0.454545</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>k-drive</td>\n",
" <td>test</td>\n",
" <td>03</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.786325</td>\n",
" <td>0.938776</td>\n",
" <td>1.175797</td>\n",
" <td>0.676471</td>\n",
" <td>0.347826</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" STUDY PHASE LEVEL AUDITIVE F1 AUDITIVE MEAN REACTION TIME \\\n",
"6 n-back test 01 NaN NaN \n",
"7 n-back test 02 NaN NaN \n",
"8 n-back test 03 NaN NaN \n",
"9 n-back test 04 1.000000 1.309286 \n",
"10 n-back test 05 0.782609 1.316484 \n",
"11 n-back test 06 0.363636 1.703583 \n",
"3 k-drive test 01 NaN NaN \n",
"4 k-drive test 02 NaN NaN \n",
"5 k-drive test 03 NaN NaN \n",
"\n",
" AUDITIVE PRECISION AUDITIVE RECALL VISUAL F1 VISUAL MEAN REACTION TIME \\\n",
"6 NaN NaN 1.000000 0.428068 \n",
"7 NaN NaN 0.928571 0.626869 \n",
"8 NaN NaN 0.640000 0.828912 \n",
"9 1.000000 1.000000 1.000000 0.942916 \n",
"10 0.818182 0.750000 0.814815 1.151405 \n",
"11 0.500000 0.285714 0.476190 1.530054 \n",
"3 NaN NaN NaN NaN \n",
"4 NaN NaN NaN NaN \n",
"5 NaN NaN NaN NaN \n",
"\n",
" VISUAL PRECISION VISUAL RECALL F1 PRECISION REACTION TIME \\\n",
"6 1.000000 1.000000 NaN NaN NaN \n",
"7 1.000000 0.866667 NaN NaN NaN \n",
"8 0.727273 0.571429 NaN NaN NaN \n",
"9 1.000000 1.000000 NaN NaN NaN \n",
"10 0.916667 0.733333 NaN NaN NaN \n",
"11 0.714286 0.357143 NaN NaN NaN \n",
"3 NaN NaN 1.000000 1.000000 0.446914 \n",
"4 NaN NaN 0.914286 0.914286 0.702571 \n",
"5 NaN NaN 0.786325 0.938776 1.175797 \n",
"\n",
" RECALL SONGS RECALL \n",
"6 NaN NaN \n",
"7 NaN NaN \n",
"8 NaN NaN \n",
"9 NaN NaN \n",
"10 NaN NaN \n",
"11 NaN NaN \n",
"3 1.000000 NaN \n",
"4 0.914286 0.454545 \n",
"5 0.676471 0.347826 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_performance"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6ae47e52-ad86-4f8d-b929-0080dc99f646",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.05357074737548828\n"
]
}
],
"source": [
"start = time.time()\n",
"df_4_col = pd.read_hdf(\"tmp.h5\", \"SIGNALS\", mode=\"r\", columns=[\"STUDY\"], start=0, stop=1)\n",
"end = time.time()\n",
"print(end - start)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7c139f3a-ede8-4530-957d-d1bb939f6cb5",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>STUDY</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>n/a</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" STUDY\n",
"0 n/a"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_4_col.head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a68d58ea-65f2-46c4-a2b2-8c3447c715d7",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(1, 1)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_4_col.shape"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "95aa4523-3784-4ab6-bf92-0227ce60e863",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"Index: 1 entries, 0 to 0\n",
"Data columns (total 1 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 STUDY 1 non-null object\n",
"dtypes: object(1)\n",
"memory usage: 16.0+ bytes\n"
]
}
],
"source": [
"df_4_col.info()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "defbcaf4-ad1b-453f-9b48-ab0ecfc4b5d5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"STUDY 0\n",
"dtype: int64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_4_col.isna().sum()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "72313895-c478-44a5-9108-00b0bec01bb8",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}