Fahrsimulator_MSY2526_AI/dataset_creation/open_parquet_test.ipynb

100 lines
1.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "2b3fface",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74f1f5ec",
"metadata": {},
"outputs": [],
"source": [
"df= pd.read_parquet(\"cleaned_0000.parquet\")\n",
"print(df.shape)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "05775454",
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "99e17328",
"metadata": {},
"outputs": [],
"source": [
"df.tail()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0238d802",
"metadata": {},
"outputs": [],
"source": [
"step2 = pd.read_parquet(\"output_windowed.parquet\")\n",
"step2.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1257c535",
"metadata": {},
"outputs": [],
"source": [
"step2.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3754c664",
"metadata": {},
"outputs": [],
"source": [
"# Zeigt alle Kombinationen mit Häufigkeit\n",
"step2[['STUDY', 'LEVEL', 'PHASE']].value_counts()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}