Anpassung neuralNetworkTests

This commit is contained in:
Laura Wehner 2025-11-15 21:31:11 +01:00
parent 6d162b313c
commit 05fbd80b8c
4 changed files with 92 additions and 22 deletions

View File

@ -54,21 +54,30 @@ MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int co
Matrix add(const Matrix matrix1, const Matrix matrix2)
{
if (matrix1.rows != matrix2.rows || matrix1.cols != matrix2.cols) { // Matrixen können nur addiert werden, sofern sie jeweils die gleiche Anzahl Spalten und Zeilen haben
Matrix errorMatrix = createMatrix(0, 0);
errorMatrix.buffer = NULL;
return errorMatrix;
size_t rows = (matrix1.rows > matrix2.rows) ? matrix1.rows : matrix2.rows;
size_t cols = (matrix1.cols > matrix2.cols) ? matrix1.cols : matrix2.cols;
// Prüfen, ob Broadcasting möglich ist
if (!((matrix1.rows == rows || matrix1.rows == 1) &&
(matrix2.rows == rows || matrix2.rows == 1) &&
(matrix1.cols == cols || matrix1.cols == 1) &&
(matrix2.cols == cols || matrix2.cols == 1))) {
Matrix errorMatrix = createMatrix(0, 0);
return errorMatrix;
}
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
for (size_t i = 0; i < matrix1.rows; i++) {
for (size_t j = 0; j < matrix1.cols; j++) {
MatrixType sum = getMatrixAt(matrix1, i, j) + getMatrixAt(matrix2, i, j);
setMatrixAt(sum, result, i, j);
}
Matrix result = createMatrix(rows, cols);
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
MatrixType val1 = matrix1.buffer[(i % matrix1.rows) * matrix1.cols + (j % matrix1.cols)];
MatrixType val2 = matrix2.buffer[(i % matrix2.rows) * matrix2.cols + (j % matrix2.cols)];
result.buffer[i * cols + j] = val1 + val2;
}
}
return result;
}
}
Matrix multiply(const Matrix matrix1, const Matrix matrix2)

View File

@ -71,6 +71,32 @@ void test_addFailsOnDifferentInputDimensions(void)
TEST_ASSERT_EQUAL_UINT32(0, result.cols);
}
void test_addSupportsBroadcasting(void)
{
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
MatrixType buffer2[] = {7, 8};
Matrix matrix1 = {.rows=2, .cols=3, .buffer=buffer1};
Matrix matrix2 = {.rows=2, .cols=1, .buffer=buffer2};
Matrix result1 = add(matrix1, matrix2);
Matrix result2 = add(matrix2, matrix1);
float expectedResults[] = {8, 9, 10, 12, 13, 14};
TEST_ASSERT_EQUAL_UINT32(matrix1.rows, result1.rows);
TEST_ASSERT_EQUAL_UINT32(matrix1.cols, result1.cols);
TEST_ASSERT_EQUAL_UINT32(matrix1.rows, result2.rows);
TEST_ASSERT_EQUAL_UINT32(matrix1.cols, result2.cols);
TEST_ASSERT_EQUAL_INT(sizeof(expectedResults)/sizeof(expectedResults[0]), result1.rows * result1.cols);
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, result1.buffer, result1.cols * result1.rows);
TEST_ASSERT_EQUAL_INT(sizeof(expectedResults)/sizeof(expectedResults[0]), result2.rows * result2.cols);
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, result2.buffer, result2.cols * result2.rows);
free(result1.buffer);
free(result2.buffer);
}
void test_multiplyReturnsCorrectResults(void)
{
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
@ -159,6 +185,7 @@ int main()
RUN_TEST(test_clearMatrixSetsMembersToNull);
RUN_TEST(test_addReturnsCorrectResult);
RUN_TEST(test_addFailsOnDifferentInputDimensions);
RUN_TEST(test_addSupportsBroadcasting);
RUN_TEST(test_multiplyReturnsCorrectResults);
RUN_TEST(test_multiplyFailsOnWrongInputDimensions);
RUN_TEST(test_getMatrixAtReturnsCorrectResult);

View File

@ -8,7 +8,41 @@
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
// TODO
FILE *file = fopen(path, "wb");
if (!file) {
perror("Fehler beim Öffnen der Datei");
return;
}
// Header schreiben
const char *header = "__info2_neural_network_file_format__";
fwrite(header, sizeof(char), strlen(header), file);
// Alle Layer schreiben
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
Layer layer = nn.layers[i];
unsigned int inputDim = layer.weights.cols; // Anzahl Eingänge
unsigned int outputDim = layer.weights.rows; // Anzahl Ausgänge
// Dimensionen schreiben
fwrite(&inputDim, sizeof(unsigned int), 1, file);
fwrite(&outputDim, sizeof(unsigned int), 1, file);
// Gewichte schreiben
size_t weightCount = layer.weights.rows * layer.weights.cols;
fwrite(layer.weights.buffer, sizeof(MatrixType), weightCount, file);
// Biases schreiben
size_t biasCount = layer.biases.rows * layer.biases.cols;
fwrite(layer.biases.buffer, sizeof(MatrixType), biasCount, file);
}
// End-Marker (inputDim = 0)
unsigned int zero = 0;
fwrite(&zero, sizeof(unsigned int), 1, file);
fclose(file);
}
void test_loadModelReturnsCorrectNumberOfLayers(void)