finale Änderungen

This commit is contained in:
Laura Wehner 2025-11-15 21:55:42 +01:00
parent 5f068f1337
commit c212109a27

View File

@ -125,50 +125,51 @@ static void assignActivations(NeuralNetwork model)
NeuralNetwork loadModel(const char *path) NeuralNetwork loadModel(const char *path)
{ {
NeuralNetwork nn = {.layers = NULL, .numberOfLayers = 0}; NeuralNetwork model = {NULL, 0};
FILE *file = fopen(path, "rb"); FILE *file = fopen(path, "rb");
if (!file) return nn;
const char *header = "__info2_neural_network_file_format__"; if(file != NULL)
size_t headerLen = strlen(header); {
char buffer[64] = {0}; if(checkFileHeader(file))
{
unsigned int inputDimension = readDimension(file);
unsigned int outputDimension = readDimension(file);
if (fread(buffer, sizeof(char), headerLen, file) != headerLen || while(inputDimension > 0 && outputDimension > 0)
strncmp(buffer, header, headerLen) != 0) { {
Layer layer = readLayer(file, inputDimension, outputDimension);
Layer *layerBuffer = NULL;
if(isEmptyLayer(layer))
{
clearLayer(&layer);
clearModel(&model);
break;
}
layerBuffer = (Layer *)realloc(model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
if(layerBuffer != NULL)
model.layers = layerBuffer;
else
{
clearModel(&model);
break;
}
model.layers[model.numberOfLayers] = layer;
model.numberOfLayers++;
inputDimension = outputDimension;
outputDimension = readDimension(file);
}
}
fclose(file); fclose(file);
return nn;
assignActivations(model);
} }
Layer *layers = NULL; return model;
unsigned int inputDim = 0, outputDim = 0;
while (fread(&inputDim, sizeof(unsigned int), 1, file) == 1 && inputDim != 0) {
fread(&outputDim, sizeof(unsigned int), 1, file);
layers = realloc(layers, (nn.numberOfLayers + 1) * sizeof(Layer));
Matrix weights;
weights.rows = outputDim;
weights.cols = inputDim;
weights.buffer = malloc(weights.rows * weights.cols * sizeof(MatrixType));
fread(weights.buffer, sizeof(MatrixType), weights.rows * weights.cols, file);
Matrix biases;
biases.rows = outputDim;
biases.cols = 1;
biases.buffer = malloc(biases.rows * biases.cols * sizeof(MatrixType));
fread(biases.buffer, sizeof(MatrixType), biases.rows * biases.cols, file);
layers[nn.numberOfLayers].weights = weights;
layers[nn.numberOfLayers].biases = biases;
layers[nn.numberOfLayers].activation = NULL;
nn.numberOfLayers++; // **WICHTIG**
}
nn.layers = layers;
fclose(file);
return nn;
} }
@ -259,15 +260,15 @@ unsigned char *predict(const NeuralNetwork model, const GrayScaleImage images[],
} }
void clearModel(NeuralNetwork *nn) void clearModel(NeuralNetwork *model)
{ {
if (!nn || !nn->layers) return; if(model != NULL)
{
for (unsigned int i = 0; i < nn->numberOfLayers; i++) { for(int i = 0; i < model->numberOfLayers; i++)
free(nn->layers[i].weights.buffer); {
free(nn->layers[i].biases.buffer); clearLayer(&model->layers[i]);
}
model->layers = NULL;
model->numberOfLayers = 0;
} }
free(nn->layers);
nn->layers = NULL;
nn->numberOfLayers = 0;
} }