\section{Energieübertragung} Die Skizze zeigt ein System zur elektrischen Energieübertragung bestehend aus Quelle, Leitung und Verbraucher. Das System soll mit einem parallel geschalteten Kondensator $X_C$ so optimiert werden, dass die Leitungsverluste $P_{VRL}$ minimal werden.\\ \begin{align*} \begin{tikzpicture}[scale=3] \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm,rotate=90]%Spannungsquelle | \draw (0,0)--(1,0)node at(.5,-.133)[right]{\footnotesize{$\underline{U}_q=100\,\volt\cdot e^{j0}$}}; \draw (.5,0)circle(.133); \draw [<-,blue] (.3,.2)--(.7,.2)node at (.5,.2)[left]{\footnotesize$\underline{U}_q$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=1cm]%Widerstand - nach EN 60617 \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {\footnotesize{$\underline{Z}_i=(1+2j)\,\ohm$}}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=1cm]%Widerstand - nach EN 60617 \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {\footnotesize{$R_L=1\,\ohm$}}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2.5cm,yshift=0cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [above right] {\footnotesize{$\underline{Z}_V=(10+j5)\,\ohm$}}; \end{scope} \begin{scope}[>=latex,very thick,xshift=3.5cm,yshift=0cm,rotate=90]%Kondensator | \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,-.133) [right] {\footnotesize{$jX_C$}}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm] \draw [dashed](2.5,0)--(3.5,0)--(3.5,.2) (2.5,1)--(3.5,1)--(3.5,.8); \draw [dashed](0,0)--(2.5,0) (2.5,1)--(3.5,1)--(3.5,.8); \draw (0,0)--(2.5,0) (2,1)--(2.5,1); \draw (0,.2)--(0,0)--(0,.2) (0,.8)--(0,1)--(.2,1); \draw node at(.5,0) [below] {\footnotesize Quelle}; \draw node at(1.5,0) [below] {\footnotesize Leitung}; \draw node at(2.5,0) [below] {\footnotesize Verbraucher}; \draw [very thin, dashed] (1,-.2)--(1,1.2)(2,-.2)--(2,1.2); \draw [->,red](2.125,1.125)--(2.375,1.125) node [right] {\footnotesize{$\underline{I}$}}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm]%Knotenpunkte \draw (0,0)circle(.035); \fill [white](0,0)circle(.025); \draw (1,0)circle(.035); \fill [white](1,0)circle(.025); \fill (1.5,0)circle(.025); \fill (2.5,0)circle(.025); \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=1cm]%Knotenpunkte \draw (0,0)circle(.035); \fill [white](0,0)circle(.025); \draw (1,0)circle(.035); \fill [white](1,0)circle(.025); \fill (1.5,0)circle(.025); \fill (2.5,0)circle(.025); \end{scope} \end{tikzpicture} \end{align*} \renewcommand{\labelenumi}{\alph{enumi})} \begin{enumerate} \item Bestimmen Sie $X_C$ so, dass der Blindleistungsbedarf des Verbrauchers verschwindet. \item Berechnen Sie die Verlustleistung $P_{VRL}$ der Leitung und die Wirkleistung $P_W$ im Verbraucher. \end{enumerate} \ifthenelse{\equal{\toPrint}{Lösung}}{% %\begin{align} %\intertext{Formeln:} %\end{align} Berechnung:\\[\baselineskip] a) Verbraucher $\uline{Z}_V\,||\,X_C$, daher Ersatzschaltbild für $\uline{Z}_V$ (ESB) in Parallelform erforderlich \begin{align*} \underline{Z}_V&=R_V+jX_V=(10+j5)\,\ohm\,\,\quad\text{ Scheinwiderstand, entspricht einer Reihenschaltung}\\[\baselineskip] Z^2_V&=R_V\cdot R_p=R^2_V+X^2_V\,\qquad\qquad\text{Umwandlung in Parallel-ESB}\\ R_p&=R_V+\frac{X^2_V}{R_V}=(10+\frac{25}{10})\,\ohm=12{,}5\,\ohm\\[\baselineskip] Z^2_V&=X_V\cdot X_{L_p}=R^2_V+X^2_V\,\,\quad\qquad\text{Umwandlung in Parallel-ESB}\\ X_{L_p}&=X_V+\frac{R^2_V}{X_V}=(5+\frac{100}{5})\,\ohm=25\,\ohm \end{align*} \begin{align*} \begin{tikzpicture}[scale=2] \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R_p$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm,rotate=90]%Spule | \draw (0,0)--(.3,0) (.7,0)--(1,0)node at(.5,-.0667) [right] {$jX_{L_p}$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \end{scope} \begin{scope}[>=latex,very thick,xshift=3cm,yshift=0cm,rotate=90]%Kondensator | \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,-.133) [right] {$jX_C$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm] \draw (0,0)--(3,0)--(3,.2) (0,1)--(3,1)--(3,.8); \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm]%Knotenpunkte \fill (0,0)circle(.025); \fill (1,0)circle(.025); \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=1cm]%Knotenpunkte \fill (0,0)circle(.025); \fill (1,0)circle(.025); \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Knotenpunkte \draw (0,0)circle(.05); \fill (0,0)circle(.025); \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=1cm]%Knotenpunkte \draw (0,0)circle(.05); \fill (0,0)circle(.025); \end{scope} \begin{scope}[>=latex,very thick] \draw node at (0,0.5) [left] {$\underline{Z}'\Rightarrow$}; \end{scope} \draw node at(1.5,0)[below]{Verbraucher $Z_V$}; % \end{tikzpicture} % \begin{tikzpicture}[scale=.5,xshift=15cm,yshift=-2cm] \begin{scope}[>=latex,very thick,scale=.25,xshift=18cm,yshift=2cm] \draw [->](0,0)--(1,0)node [right]{$R_p$}; \draw [->](1,0)--(1,2)node [above]{$jX_{Lp}$}; \draw [->](1,0)--(1,-2)node[below]{$jX_C$}; \draw [->,red!50!blue](0,0)--(1,2)node at (.5,1)[left]{$Z_V$}; \end{scope} \end{tikzpicture} \end{align*} \begin{align*} \underline{Z}'&=\underline{Z}_V || jX_C\\ \frac{1}{\underline{Z}'}&=\frac{1}{R_p}+\frac{1}{jX_{Lp}}+\frac{1}{jX_C}\\ \intertext{Leitungsverluste sind minimal, wenn die Blindleistung $=0$ wird (Kompensation)} \frac{1}{\underline{Z}'}&=\frac{1}{R_p}+\cancel{\frac{1}{jX_{Lp}}}+\cancel{\frac{1}{jX_C}}\qquad\Rightarrow \underline{Z}'=R_p\\ \Im(\underline{Z}')&=0 \quad\text{oder}\quad |X_C| \stackrel{!}{=} |X_{L_p}|\text{ also}\\ %\Re(\underline{Z}')&=R_p\\ X_C&=-X_{L_p}=\uuline{-25\,\ohm}\\ \underline{Z}_{ges}&=\underline{Z}_i+R_L+\underline{Z}'\\ \underline{Z}_{ges}&=\underline{Z}_i+R_L+R_p=(1+j2+1+12{,}5)\,\ohm=(14{,}5+j2)\,\ohm\\ |\underline{Z}_{ges}|&=\sqrt{14{,}5^2+2^2}\,\ohm=14{,}64\,\ohm\\ I&=\frac{U}{|Z_{ges}|}=\frac{100\,\volt}{14{,}64\,\ohm}=6{,}83\,\ampere\\ \intertext{b) Verlust- und Wirkleistung} P_{VR_L}&=I^2\cdot R_L=(6{,}83\,\ampere)^2\cdot 1\,\ohm=\uuline{46{,}7\,\watt}\\ P_W&=I^2\cdot R_p=(6{,}83\,\ampere)^2\cdot 12{,}5\,\ohm=\uuline{583\,\watt} \end{align*} \clearpage }{}%