\section{Werte $R_L$ und $L$ einer Spule} Aus den drei gemessenen sinusförmigen Spannungen $U$, $U_N$, und $U_{SP}$ lassen sich die Werte $R_L$ und $L$ einer Spule bestimmen. \begin{align*} U=100\,\volt\\ U_N=60\,\volt\\ U_{SP}=70\,\volt\\ R_N=60\,\ohm\\ f = 50\,\hertz \end{align*} \renewcommand{\labelenumi}{\alph{enumi})} \begin{enumerate} \item Zeichnen Sie ein qualitatives Zeigerdiagramm der Spannungen! \item Bestimmen Sie $R_L$ und $L$! \end{enumerate} \begin{align*} \begin{tikzpicture}[scale=2] \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Widerstand \draw (0,0)--(0.2,0) (.2,-0.1)rectangle(.8,0.1) (.8,0)--(1,0)node at (.5,.1) [above] {$R_N$}; \draw [->,blue] (.3,-.2)--(.7,-.2) node at (.5,-.2)[below]{\footnotesize$U_N$}; \draw (0,1)--(0,0)--(.1,0) (3,1)--(3,0)--(2.9,0);%anschuß und Füllt die Ecken der Verbindung! \fill (0,1)circle (0.025) (3,1)circle (0.025); \draw [->,blue](.2,1)--(2.8,1)node at (1.5,1)[below]{\footnotesize$U$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm]%Widerstand \draw (0,0)--(0.2,0) (.2,-0.1)rectangle(.8,0.1) (.8,0)--(1,0)node at (.5,.1) [above] {$R_L$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm]%Spule \draw (0,0)--(.2,0) (.2,-0.1)rectangle(.8,0.1) (.8,0)--(1,0)node at (.5,.1) [above] {$L$}; \fill (.2,-0.1)rectangle(.8,0.1); \draw [->,blue] (-.7,-.2)--(.7,-.2) node at (0,-.2)[below]{\footnotesize$U_{SP}$}; \end{scope} \end{tikzpicture} \end{align*} \ifthenelse{\equal{\toPrint}{Lösung}}{% %\begin{align} %\intertext{Formeln:} %\end{align} \begin{align*} \intertext{Berechnung:} \end{align*} \begin{align*} \begin{tikzpicture}[scale=.5] \begin{scope}[>=latex,very thick, xshift=0, yshift=0] \draw [black!25!,very thin](0,0)grid(8,7); \draw [->,red, thick](0,0)--(8,0)node [right] {$\underline{I}$}; \draw [->](0,0)--(6,0)node at(3,0)[below] {$\underline{U}_N$}; \draw [->](6,0)--(7.25,6.887)node at(6.5,3.5)[left] {$\underline{U}_{SP}$}; \draw [->](0,0)--(7.25,6.887)node at(3.5,3.5)[left] {$\underline{U}$}; \draw [->,blue](6,0)--(7.25,0)node at(6.5,0)[below] {$\underline{U}_{R_L}$}; \draw [->,blue](7.25,0)--(7.25,6.887)node at(7,3.5)[right] {$\underline{U}_{L}$}; \draw [black!50!](33:10)arc(33:53:10)node [left]{$\underline{U}=100\,\volt\widehat{=}10\,\centi\metre$}; \draw [black!50!](6,0)+(90:7)arc(90:70:7)node [right]{$\uline{U}_{SP}=70\,\volt\widehat{=}7\,\centi\metre$}; \draw [black!50!](3,-1)node[below]{$\underline{U}_N=60\,\volt\widehat{=}6\,\centi\metre$}; \end{scope} \begin{scope}[>=latex,very thick, xshift=12cm, yshift=2cm] \draw node at(0,2)[right]{$I$ zeichnen}; \draw node at(0,1)[right]{$u_N || I$}; \draw node at(0,0)[right]{Mit Zirkel $U$ und $U_{SP}$}; \end{scope} \end{tikzpicture} \end{align*} \begin{align*} I&=\frac{U_N}{R_N}=\frac{60\,\volt}{60\,\ohm}=\uuline{1\,\ampere}\\ \underline{U}_{SP}&=70\,\volt=\sqrt{U^2_{RL}+U^2_L}\\ \end{align*} \clearpage Widerstandsoperatoren:\\ \footnotesize{Impedanzdreieck wie Spannungsdreieck} \begin{align*} \begin{tikzpicture}[scale=.5] \begin{scope}[>=latex,very thick, xshift=0, yshift=0] \draw [black!25!,very thin](0,0)grid(8,7); \draw [->](0,0)--(6,0)node at(3,0)[below] {$R_N$}; \draw [->](6,0)--(7.25,6.887)node at(6.5,3.5)[left] {$\underline{Z}_{SP}$}; \draw [->](0,0)--(7.25,6.887)node at(3.5,3.5)[left] {$\underline{Z}$}; \draw [->,blue](6,0)--(7.25,0)node at(6.5,0)[below] {$R_L$}; \draw [->,blue](7.25,0)--(7.25,6.887)node at(7,3.5)[right] {$X_L$}; \end{scope} \end{tikzpicture} \end{align*} \begin{align*} Z_{SP}&=\frac{U_{SP}}{I}=\frac{70\,\volt}{1\,\ampere}=70\,\ohm \quad \text{\footnotesize{(Nur Effektivwerte - ohne Winkel)}}\\%=\sqrt{R^2_L+X^2_L}\\ Z^2_{SP}&=R^2_L+X^2_L=(70\,\ohm)^2\\ X^2_L&=(70\,\ohm)^2-R^2_L \tag{1}\\[\baselineskip] Z&=\frac{U}{I}=\frac{100\,\volt}{1\,\ampere}=100\,\ohm\\ Z^2&=(R_N+R_L)^2+X^2_L=(100\,\ohm)^2\\ X^2_L&=(100\,\ohm)^2-(R_N+R_L)^2\\ &=(100\,\ohm)^2-(R^2_N+2\cdot R_N\cdot R_L+R^2_L) \tag{2}\\[\baselineskip] (70\,\ohm)^2-\cancel{R^2_L}&=(100\,\ohm)^2-R^2_N-2\cdot R_N\cdot R_L-\cancel{R^2_L}\tag{$1$ in $2$}\\ 2\cdot R_N\cdot R_L&=(100\,\ohm)^2-R^2_N-(70\,\ohm)^2\\ R_L&=\frac{(100\,\ohm)^2-R^2_N-(70\,\ohm)^2}{2\cdot R_N}=\frac{(100\,\ohm)^2-(60\,\ohm)^2-(70\,\ohm)^2}{2\cdot 60\,\ohm}\\ &=\frac{1500\,\ohm^2}{2\cdot 60\,\ohm}=\uuline{12{,}5\,\ohm}\\ %(100\,\ohm)^2&=(60\,\ohm)^2+2\cdot 60\,\ohm\cdot R_L+\cancel{R^2_L}+(70\,\ohm)^2 -\cancel{R^2_L}\\ %2\cdot 60\,\ohm\cdot R_L&=(100\,\ohm)^2-(60\,\ohm)^2-(70\,\ohm)^2=1500(\,\ohm)^2\\ %R_L&=\frac{1500(\,\ohm)^2}{2\cdot 60\,\ohm}=\uuline{12{,}5\,\ohm} \tag{in $1$}\\ \text{in (1) }\qquad X_L&=\sqrt{(70\,\ohm)^2-(12{,}5\,\ohm)^2}=68{,}87\,\ohm\\ L&=\frac{X_L}{\omega}=\frac{68{,}87\,\ohm}{2\pi\cdot 50\,\frac{1}{\second}}=\uuline{0{,}219\,\henry} \end{align*} \clearpage }{}%