\section{Überlagerungsmethode} Berechnen Sie mit der Überlagerungsmethode den Strom $\uline{I}_C$ \begin{align*} R&=R_L=10\,\ohm\quad L=50\,\milli\henry\quad C=100\,\micro\farad\\ f&=50\,\hertz\quad \uline{U}_q=5\,\volt \cdot e^{j20\,\degree}\quad \uline{I}_q=2\,\ampere \cdot e^{-j60\,\degree}\\ \end{align*} \begin{align*} \begin{tikzpicture}[scale=3] \begin{scope}[>=latex,very thick,xshift=0cm,yshift=.333cm,rotate=90,scale=.75]%Spule | \draw (.2,0)--(.3,0) (.7,0)--(0.9,0)node at(.5,-.0667) [right] {$L$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=-.083cm,rotate=90,scale=.75] \draw (0.1,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R_L$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90]%Spannungsquelle | \draw (0,0)--(1,0) node at (.5,-.133) [right] {$\uline{U}_q$}; \draw (.5,0)circle(.133); \draw [<-,blue] (.3,.2)--(.7,.2) node at (.5,.2)[left]{$\uline{U}_q$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=1cm]%Widerstand - nach EN 60617 \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm,rotate=90]%Stromquelle \draw (0,0)--(.367,0) (.5,-.133)--(.5,.133) (.633,0)--(1,0)node at(.5,-.133)[right]{$I_q$}; \draw (.5,0)circle(.133); \draw [->,red] (.3,.2)--(.7,.2) node at (.5,.2)[left]{\footnotesize$\uline{I}_q$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=3cm,yshift=0cm,rotate=90]%Kondensator | \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,-.133) [right] {$C$}; \draw [<-,red] (.3,.2)--(.7,.2) node at (.5,.2)[left]{$\uline{I}_C$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen. \draw (0,.98)--(0,1)--(1,1) (1.8,1)--(3,1)--(3,.9) (0,.02)--(0,0)--(3,0)--(3,.2); \end{scope} \end{tikzpicture} \end{align*} \ifthenelse{\equal{\toPrint}{Lösung}}{% %\begin{align} %\intertext{Formeln:} %\text{...noch einfügen...} %\end{align} Berechnung:\\[\baselineskip] $R_L+jX_L \text{ unwirksam, da parallel zur Spannungsquelle.}$\\[\baselineskip] $\omega=2\pi f=2\pi\cdot 50\,\frac{1}{\second}=314{,}2\,\frac{1}{\second}$ \begin{align*} \intertext{a) nur Spannungsquelle $\Rightarrow\uline{I}_q=0$} \begin{tikzpicture}[scale=3] \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90]%Spannungsquelle | \draw (0,0)--(1,0) node at (.5,-.133) [right] {$\uline{U}_q$}; \draw (.5,0)circle(.133); \draw [<-,blue] (.3,.2)--(.7,.2) node at (.5,.2)[left]{$\uline{U}_q$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=1cm]%Widerstand - nach EN 60617 \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm,rotate=90]%Kondensator | \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,-.133) [right] {$C$}; \draw [<-,red] (.3,.2)--(.7,.2) node at (.5,.2)[left]{$\uline{I}'_C$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen. \draw (1,.98)--(1,1)--(1.1,1) (1.8,1)--(2,1)--(2,.9) (1,.02)--(1,0)--(2,0)--(2,.2); \end{scope} \end{tikzpicture} \end{align*} \begin{align*} B_C&=\omega \cdot C=314{,}2\frac{1}{\,\second}\cdot 100\,\micro\farad=31{,}42\,\milli\siemens\\ X_C&=-\frac{1}{B_C}=-\frac{1}{31{,}42\,\milli\siemens}=-31{,}831\,\ohm\\ \uline{I}'_C&=\frac{\uline{U}_q}{R+jX_C}=\frac{4{,}698+j1{,}710}{10-j31{,}83}\,\ampere=\uline{(-6{,}693+j149{,}7)\,\milli\ampere}=149{,}8\,\milli\ampere\cdot e^{j92{,}3\,\degree} \end{align*} \begin{align*} \intertext{b) Nur Stromquelle $\Rightarrow\uline{U}_q=0$} \begin{tikzpicture}[scale=3] \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$G=\frac{1}{R}$}; \draw [<-,blue] (.3,.2)--(.7,.2)node at(.5,.2)[left]{\footnotesize$\uline{U}''$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90]%Stromquelle \draw (0,0)--(.367,0) (.5,-.133)--(.5,.133) (.633,0)--(1,0)node at(.5,-.133)[right]{$I_q$}; \draw (.5,0)circle(.133); \draw [->,red] (.3,.2)--(.7,.2) node at (.5,.2)[left]{\footnotesize$\uline{I}_q$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=3cm,yshift=0cm,rotate=90]%Kondensator | \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,-.133) [right] {$C$}; \draw [<-,red] (.3,.2)--(.7,.2) node at (.5,.2)[left]{$\uline{I}''_C$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen. \draw (1,.98)--(1,1)--(2,1) (1.8,1)--(3,1)--(3,.9) (1,.02)--(1,0)--(3,0)--(3,.2); \end{scope} \end{tikzpicture} \end{align*} \begin{align*} \uline{I}''_C&=\uline{U}''\cdot jB_C\qquad \uline{U}''=\uline{I}_q\cdot \uline{Z}_{||}\\ &\text{oder Stromteiler } \uline{I}''_C=\uline{I_q}\cdot\frac{R}{R-jX_C}\\[\baselineskip] \uline{I}_q&=2\,\ampere \cdot e^{-j60\,\degree}=(1-j1{,}732)\,\ampere\\ G&=\frac{1}{R}=100\,\milli\siemens\\ \uline{Y}_{||}&=G+jB_C=(100+j31{,}42)\,\milli\siemens=0{,}105\,\siemens \cdot e^{j17{,}44\,\degree}\\ \uline{Z}_{||}&=\frac{1}{\uline{Y}_{||}}=9{,}54\,\ohm\cdot e^{-j17{,}44\,\degree}\\ \uline{U}''&=\uline{I}_q\cdot \uline{Z}_{||} %\frac{\uline{I}_q}{Y_{||}}=\frac{\uline{I}_q}{G+jB_C}= %\frac{2\,\ampere \cdot e^{-j60\,\degree}}{(0{,}1+j0{,}03142)\,\siemens}\\ %&=\frac{2\,\ampere \cdot e^{-j60\,\degree}}{0{,}105\,\siemens \cdot e^{-j17{,}44\,\degree}} =2\,\ampere \cdot e^{-j60\,\degree}\cdot 9{,}54\,\ohm \cdot e^{-j17{,}44\,\degree}\\ &=19{,}08\,\volt\cdot e^{-j77{,}44\,\degree}=(4{,}15-j18{,}62)\,\volt\\[\baselineskip] %jB_C&=31{,}42\,\milli\siemens=31{,}42\,\milli\siemens\cdot e^{j90\,\degree}\\ \uline{I}''_C&=\uline{U}''\cdot jB_C=19{,}08\,\volt\cdot e^{-j77{,}44\,\degree} \cdot 31{,}42\,\milli\siemens \cdot e^{j90\,\degree}\\ &=600\,\milli\ampere\cdot e^{j12{,}56\,\degree}=\uline{(585{,}1+j130{,}3)\,\milli\ampere}\\ %&=\frac{\uline{I}_q\cdot X_C}{G+jB_C}\\ %=\frac{(1-j1{,}732)\,\ampere\cdot (-j31{,}42\cdot \power{10}{-3})\,\ampere\second\per\volt}{(0{,}1+j31{,}42\cdot \power{10}{-3})\,\ampere\second\per\volt}\\ %&=\frac{(54{,}42+j31{,}42)\cdot \power{10}{-3}}{(0{,}1+j31{,}42\cdot \power{10}{-3})}\,\ampere %=\frac{(54{,}42+j31{,}42)}{(100+j31{,}42)\cdot }\,\ampere=(585{,}1+j130{,}3)\,\milli\ampere &\text{oder alternativ:}\\ \uline{I}''_C&=\uline{I}_q\cdot \frac{R}{R+jX_C}\\ \intertext{Überlagerung} \uline{I}_C&=\uline{I}'_C+\uline{I}''_C=(-6{,}69+j149{,}7+585{,}1+j130{,3})\,\milli\ampere\\ &=\uuline{(578{,}41+j279{,}99)\,\milli\ampere}=\uuline{642{,}6\,\milli\ampere\cdot e^{+j25{,}38\,\degree}}\\ \end{align*} \clearpage }{}%