\section{Dualitätskonstante} Berechnen Sie zu der gegebenen Schaltung die duale Schaltung mit der Dualitätskonstanten.\\[\baselineskip] $R^2_D=10000\,\ohm^2$\\ $R_1=80\,\ohm$\\ $L_1=50\,\milli\henry$\\ $C_1=10\,\micro\,\farad$ \begin{align*} \begin{tikzpicture}[scale=2] \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Kondensator - \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,.133) [above] {$C_1$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=.5cm]%Widerstand - nach EN 60617 \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_1$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=-.5cm]%Spule - \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$L_1$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm] \draw (1.1,.5)--(1,.5)--(1,-.5)--(1.1,-.5)(1.9,.5)--(2,.5)--(2,-.5)--(1.9,-.5)(2,0)--(3,0); \fill(0,0)circle(.05) (3,0)circle(.05); \end{scope} \end{tikzpicture} \end{align*} \ifthenelse{\equal{\toPrint}{Lösung}}{% \begin{align} \intertext{Formeln:} \uline{Z}_1(\omega)&=R^2_D \cdot \uline{Y}_2(\omega) \end{align} Berechnung:\\[\baselineskip] Parallel $\Leftrightarrow$ Serie\\ Leitwert $\Leftrightarrow$ Widerstand\\ Kapazität $\Leftrightarrow$ Induktivität\\ Parallelschaltung $R_1||L_1$ in Serienschaltung $R_2+C_2$ Serienschaltung $C_1+(R_2+C_2)$ in Parallelschaltung $L_2 ||(R_2+C_2)$ \begin{align*} \begin{tikzpicture}[scale=2] \draw node at (0,0){\phantom{.}}; \draw node at (0,1.5){Zwischenschritt:}; \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0.5cm]%Kondensator - \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,.133) [above] {$C_1$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0.5cm]%Kondensator - \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,.133) [above] {$C_2$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0.5cm]%Widerstand - nach EN 60617 \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_2$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0.5cm] % \draw (1.1,.5)--(1,.5)--(1,-.5)--(1.1,-.5)(1.9,.5)--(2,.5)--(2,-.5)--(1.9,-.5)(2,0)--(3,0); % \draw (0,.5)--(.5,.5) (.5,.5)--(.5,.5)--(.5,-.5)--(2,-.5) % (2.5,.5)--(2.5,-.5)--(2,-.5)(2.5,.5)--(3,.5); \fill(0,0)circle(.05) (3,0)circle(.05); \end{scope} \end{tikzpicture} \begin{tikzpicture}[scale=2] \draw node at (0,1.0){Duale Schaltung:}; \begin{scope}[>=latex,very thick,xshift=.5cm,yshift=.5cm]%Kondensator - \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,.133) [above] {$C_2$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1.5cm,yshift=.5cm]%Widerstand - nach EN 60617 \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_2$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=-.5cm]%Spule - \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$L_2$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm] % \draw (1.1,.5)--(1,.5)--(1,-.5)--(1.1,-.5)(1.9,.5)--(2,.5)--(2,-.5)--(1.9,-.5)(2,0)--(3,0); \draw (0,.5)--(.5,.5) (.5,.5)--(.5,.5)--(.5,-.5)--(2,-.5) (2.5,.5)--(2.5,-.5)--(2,-.5)(2.5,.5)--(3,.5); \fill(0,.5)circle(.05) (3,.5)circle(.05); \end{scope} \end{tikzpicture} \end{align*} \begin{align*} R_1\cdot R_2&=R^2_D\Rightarrow R_2=\frac{R^2_D}{R_1}=\frac{10000\,\ohm^2}{80\,\ohm}=\uuline{125\,\ohm}\\ \text{(C zu L) aus: }\frac{L_2}{C_1}&=R^2_D\Rightarrow L_2=R^2_D\cdot C_1 =\power{10}{4}\,\ohm^{{\cancel{2}}} \cdot \power{10}{-5}\,\frac{\second}{\cancel{\ohm}} =0{,}1\,\frac{\volt\second}{\ampere} =\uuline{100\,\milli\henry}\\ \text{(L zu C) aus: }\frac{L_1}{C_2}&=R^2_D\Rightarrow C_2=\frac{L_1}{R^2_D} =\frac{50\,\milli\henry}{10000\,\ohm^2} =5\cdot \power{10}{-6}\,\frac{\cancel{\volt}\second}{\cancel{\ampere}} \cdot \frac{\ampere^{\cancel{2}}}{\volt^{\cancel{2}}} =\uuline{5\,\micro\farad} \end{align*} \clearpage }{}%