\section {Netztransformator} Von einem Netztransformator sind folgende Daten gegeben:\\[.5\baselineskip] Primärspannung $U_1=230\,\volt$; Frequenz $f=50\,\hertz$;\\ Primärwindungszahl $N_1=784$ Windungen.\\[.5\baselineskip] Induktivität der Primärwicklung $L_1=5{,}66\,\henry$; \\ Induktivität der Sekundärwicklung $L_2=1{,}42\,\henry$; \\[.5\baselineskip] Widerstand der Primärwicklung $R_1=800\,\ohm$;\\ Widerstand der Sekundärwicklung $R_2=150\,\ohm$.\\[.5\baselineskip] Eisenquerschnitt $A_{Fe}=11\,\centi\square\metre$. Das Feld ist über dem Querschnitt $A_{Fe}$ homogen, die Streuung ist Null! \renewcommand{\labelenumi}{\alph{enumi})} \begin{enumerate} \item Welche Spannung $U_2$ tritt an der Sekundärwicklung auf, wenn sie unbelastet ist, d.h. $I_2=0$ ist? \item Welchen Strom nimmt der Transformator bei sekundärseitigem Leerlauf auf? \item Welche Flussdichte $\widehat{B}_{Fe}$ tritt bei sekundärseitigem Leerlauf im Eisen auf? \end{enumerate} \ifthenelse{\equal{\toPrint}{Lösung}}{% %\begin{align} %\intertext{Formeln:} %\end{align} Berechnung:\\ \begin{align*} \begin{tikzpicture}[scale=2] \begin{scope}[>=latex,very thick,xshift=0cm,yshift=1cm]%Widerstand \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_1$}; \draw [->,red] (0,.1)--(.25,.1)node at(.125,.1)[above]{\footnotesize$\uline{I}_1$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=1cm]%Spule - \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$L_1$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm,rotate=90]%Spannungsquelle \draw (0,0)--(1,0);% node at (.5,-.133) [right] {$U_1$}; \draw (.5,0)circle(.133); \draw [<-,blue] (.3,.2)--(.7,.2) node at (.5,.2)[left]{$j\omega M\cdot \uline{I}_2$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2.5cm,yshift=0cm,rotate=90]%Spannungsquelle \draw (0,0)--(1,0);% node at (.5,-.133) [right] {$U_1$}; \draw (.5,0)circle(.133); \draw [<-,blue] (.3,-.2)--(.7,-.2) node at (.5,-.2)[right]{$j\omega M\cdot \uline{I}_1$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2.5cm,yshift=1cm]%Spule - \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$L_2$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \end{scope} \begin{scope}[>=latex,very thick,xshift=3.5cm,yshift=1cm]%Widerstand \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_2$}; \draw [->,red] (1,.1)--(.75,.1)node at(.875,.1)[above]{\footnotesize$\uline{I}_2$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen. \draw (0,0)--(2,0)--(2,.2) (4.5,0)--(2.5,0)--(2.5,.2) (2,.8)--(2,1)--(1.8,1)(2.5,.8)--(2.5,1)--(2.6,1); \fill (0,0)circle(0.025cm)(0,1)circle(0.025cm)(4.5,0)circle(0.025cm)(4.5,1)circle(0.025cm); \draw [->,blue] (0,.8)--(0,.2) node at (0,.5)[left]{$\uline{U}_1$}; \draw [->,blue] (4.5,.8)--(4.5,.2) node at (4.5,.5)[right]{$\uline{U}_2$}; \end{scope} \end{tikzpicture} \end{align*} Ersatzschaltbild \begin{align*} \begin{tikzpicture}[scale=2] \begin{scope}[>=latex,very thick,xshift=0cm,yshift=1cm]%Widerstand \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_1$}; \draw node at(.5,-.2){\footnotesize$800$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=1cm]%Spule - \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$X_{L_1}-X_M$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \draw node at(.5,-.2){\footnotesize$+j887$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm,rotate=90]%Spule | \draw (0,0)--(.3,0) (.7,0)--(1,0)node at(.5,.0667) [left] {$X_M$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \draw [<-,blue] (.3,-.2)--(.7,-.2)node at(.5,-.2)[right]{\footnotesize$\uline{U}_M$}; \draw node at(.25,.25){\footnotesize$j891$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=1cm]%Spule - \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$X_{L_2}-X_M$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \draw node at(.5,-.2){\footnotesize$-j445$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=3cm,yshift=1cm]%Widerstand \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_2$}; \draw node at(.5,-.2){\footnotesize$150$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen. \draw (0,0)--(4,0); \fill (0,0)circle(0.025cm)(0,1)circle(0.025cm)(4,0)circle(0.025cm)(4,1)circle(0.025cm); \draw [->,blue] (0,.7)--(0,.3) node at (0,.5)[left]{$\uline{U}_1$}; \draw [->,blue] (4,.7)--(4,.3) node at (4,.5)[right]{$\uline{U}_2$}; \end{scope} \end{tikzpicture} \end{align*} \begin{enumerate} \item Spannung $U_2$ \begin{align*} \uline{U}_1&=\uline{I}_1\cdot (R_1+j\omega\cdot L_1) +j\omega\cdot M\cdot \uline{I}_2\\ \uline{U}_2&=\uline{I}_2\cdot (R_2+j\omega\cdot L_2)+j\omega\cdot M\cdot \uline{I}_1 \end{align*} \footnotesize{Hinweis: Es kann auch $X_{L_1}=\omega\cdot L_1$ bzw. $X_M=\omega\cdot M$ verwendet werden.}\\ \normalsize \clearpage \enlargethispage{2cm} \begin{align*} \text{mit }\uline{I}_2&=0\\ \uline{U}_1&=\uline{I}_1\cdot (R_1+j\omega\cdot L_1)\\ \uline{U}_2&=j\omega\cdot M\cdot \uline{I}_1 \\ \Rightarrow\frac{\uline{U}_2}{\uline{U}_1}&=\frac{j\omega\cdot M}{R_1+j\omega\cdot L_1}\\ U_2&=U_1\cdot \frac{\sqrt{(\omega\cdot M)^2}}{\sqrt{R^2_1+(\omega\cdot L_1)^2}}\qquad\text{(Betrag: }U_2=|\uline{U}_2|)\qquad \text{(1)}\\[.5\baselineskip] &\text{Streuung ist Null } \Rightarrow \text{Kopplungsfaktor }K=1=\frac{|M|}{\sqrt{L_1\cdot L_2}}\\ \Rightarrow M&=\sqrt{L_1\cdot L_2}=\sqrt{5{,}66\cdot 1{,}42}\,\henry=2{,}835\,\henry\\ X_{L_1}&=\omega\cdot L_1=2\cdot \pi\cdot 50\,\cancel{\power{\second}{-1}}\cdot 5{,}66\,\volt\cancel{\second}\per\ampere=1{,}778\,\kilo\ohm\quad\text{\footnotesize{(Zur Vollständigkeit $X_{L_2}=446\,\ohm$)}}\\ X_{M}&=\omega\cdot M=2\cdot \pi\cdot 50\,\cancel{\power{\second}{-1}}\cdot 2{,}835\,\volt\cancel{\second}\per\ampere=891\,\ohm\\ &\text{aus (1):} \Rightarrow U_2=\uline{U}_1\cdot \frac{X_M}{\sqrt{R^2_{1}+X^2_{L_1}}}=230\,\volt\cdot \frac{891}{\sqrt{800^2+1778^2}}=\uuline{105{,}1\,\volt} \end{align*} \item Stromaufnahme bei Leerlauf \vspace{-.25cm} \begin{align*} \uline{I}_1&=\frac{\uline{U}_1}{R_1+j\omega L_1}\\ I_1&=\frac{U_1}{\sqrt{R^2_{1}+X^2_{L_1}}}=\frac{230\,\volt}{\sqrt{800^2+1778^2}}\,\frac{1}{\ohm}=\uuline{118\,\milli\ampere}\quad\text{(Betrag)}\\ \end{align*} \begin{minipage}[c]{.62\textwidth} \item Flussdichte, Sekundärspule spielt keine Rolle bei $I_2=0$ \vspace{-.25cm} \begin{align*} \psi&=L_1\cdot i=N_1\cdot \phi=N_1\cdot B\cdot A\\ B&=\frac{L_1\cdot i}{N_1\cdot A}\\ \widehat{B}&=\frac{L_1\cdot \widehat{I}}{N_1\cdot A_{Fe}}=\frac{5{,}66\,\volt\second\per\cancel{\ampere}\cdot \sqrt{2}\cdot 118\cdot \power{10}{-3}\,\cancel{\ampere}}{784\cdot 11\cdot \underbrace{\power{10}{-4}}_{(\power{10}{-2})^2}\,\metre^2}=\uuline{1{,}095\,\tesla} \end{align*} \end{minipage}% \begin{minipage}[c]{.33\textwidth} \begin{align*} \begin{tikzpicture}[scale=1.0] \draw(0,0)rectangle(1.5,1.5); \draw(.25,.25)rectangle(1.25,1.25); \draw[->,red](.25,1.375)--(.5,1.375)node at(.375,1.5)[above]{$\phi$}; \draw[black!75!](1,1.25)--(1,1.5)node [above]{$A_{Fe}$}; \draw[red!70!blue](0,.5)--(-.5,.5)(0,1)--(-.5,1)node [left]{$\uline{I}_1$}; \fill[red!70!blue](0,.5)rectangle(.25,1)node at(.25,.75)[right]{$N_1$}; \draw[red!70!blue](1.5,.5)--(2,.5)(1.5,1)--(2,1)node [right]{$\uline{I}_2=0$}; \fill[red!70!blue](1.25,.5)rectangle(1.5,1)node at(1.25,.75)[left]{$N_2$}; \end{tikzpicture} \end{align*} \end{minipage} Bemerkung: \begin{align*} U_{L_1}&=\frac{2\pi}{\sqrt{2}}\cdot f\cdot N_1\cdot \widehat{B}\cdot A_{Fe}=I_1\cdot \omega\cdot L_1=209{,}7\,\volt\\ \widehat{B}&=\frac{2\pi}{\sqrt{2}}\cdot f\cdot \frac{U_1}{N_1\cdot A_{Fe}}=1{,}2\,\tesla \text{ ist falsch, gilt nur für idealen Transformator! } \end{align*} \footnotesize{Warum? Hier ist der Widerstand $R_1$ nicht berücksichtigt!\\ Rechnung oben nur mit Beträgen, nicht im Komplexen.\\ $\uline{U}_1=\uline{U}_{R_1}+\uline{U}_{L_1}=(94{,}4+j209{,}7)\,\volt=230\,\volt\cdot e^{-j114{,}3}$} \end{enumerate} \clearpage }{}%