\section {Resonanzfrequenz Zweipol} Berechnen Sie die Resonanzfrequenz des abgebildeten Zweipols $L=12\,\milli\henry$, $C_1=2\,\micro\farad$, $R=160\,\ohm$ \vspace{-.5cm} \begin{align*} \begin{tikzpicture}[scale=2] \begin{scope}[>=latex,very thick,xshift=0cm,yshift=1cm]%Spule - \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$L$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90]%Kondensator | \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,-.133) [right] {$C$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen. \draw (0,0)--(2,0)--(2,.2) (1,1)--(2,1)--(2,.9); \fill (0,0)circle(0.05cm)(0,1)circle(0.05cm); % \draw [->,blue] (2.5,.8)--(2.5,.2) node at (2.5,.5)[right]{$\uline{U}_2$}; % \draw[<->](1.5,1.125)arc(60:120:.5cm)node at(1.25,1.25)[above]{$M$}; \end{scope} \end{tikzpicture} \end{align*} \ifthenelse{\equal{\toPrint}{Lösung}}{% %\begin{align} %\intertext{Formeln:} %\end{align} Berechnung:\\ \begin{align*} \text{Falsch ist: } f_{res}&=\frac{1}{2\pi\sqrt{L\cdot C}}=\frac{1}{2\pi\sqrt{12\cdot \power{10}{-3}\,\ohm\second\cdot 2\cdot \power{10}{-6}\,\frac{\second}{\ohm}}}=\uline{1027\,\frac{1}{\second}}\\ &\text{Gilt nur für } R\rightarrow\infty \text{, reine Reihen- oder Parallelschaltung.}\\[.5\baselineskip] \text{Bei Resonanz: }\Im\, (\uline{Z})&=0 \\ \uline{Z}=jX_L+(R||jX_C)&=j\omega L+\frac{R\cdot \frac{-j}{\omega C}}{R-j\cdot \frac{1}{\omega C}}\underbrace{\cdot \frac{R+j\frac{1}{\omega C}}{R+j\frac{1}{\omega C}}}_{\text{konj. komplex erweitern}}\hspace{-.75cm}=j\omega L+\frac{R^2\cdot \frac{-j}{\omega C}+R\frac{1}{(\omega C)^2}}{R^2+\frac{1}{(\omega C)^2}}\\ &=\underbrace{\frac{\frac{R}{(\omega C)^2}}{R^2+\frac{1}{(\omega C)^2}}}_{\Re\,= \text{ Widerstand bei Resonanz, }\omega_{res}}+j\underbrace{\Big(\omega L-\frac{R^2}{\omega C\big(R^2+(\frac{1}{\omega C})^2\big)}\Big)}_{\Im =0\text{ bei }\omega_{res}}\\ &\omega L-\frac{R^2}{\omega C\left(R^2+\frac{1}{(\omega C)^2}\right)}=0\\ \Im\quad\Rightarrow\, &\, \omega_{res}\cdot \left[L(\omega_{res}\cdot C\cdot \left(R^2+\frac{1}{(\omega_{res}\cdot C)^2}\right)\right]=R^2\\ &\omega^2_{res}\cdot L\cdot C\cdot R^2+\frac{L}{C}=R^2\\ \Rightarrow\, &\omega^2_{res}=\frac{R^2-\frac{L}{C}}{L\cdot C\cdot R^2}=\frac{1}{L\cdot C}-\frac{1}{(R\cdot C)^2}=\frac{1}{12\,\milli\henry\cdot 2\,\micro\farad}-\frac{1}{(160\,\ohm\cdot 2\,\micro\farad)^2}\\ &=\frac{1}{12\cdot \power{10}{-3}\,\cancel{\ohm}\second\cdot 2\cdot \power{10}{-6}\,\frac{\second}{\cancel{\ohm}}}-\frac{1}{160\,\cancel{\ohm}\cdot 2\cdot \power{10}{-6}\,\frac{\second}{\cancel{\ohm}}}\\ &=4{,}17\cdot \power{10}{7}\power{\second}{-2}-9{,}77\cdot \power{10}{6} \power{\second}{-2} =3{,}19\cdot \power{10}{7}\cdot \power{\second}{-2}\\ \omega_{res}&=\sqrt{\omega^2_{res}}=5648\cdot \power{\second}{-1}\\ f_{res}&=\frac{\omega_{res}}{2\pi}=\uuline{899\,\hertz}\\ \end{align*} \begin{align*} \intertext{Nicht gefragt Resonanzwiderstand: }\\ Z&=\frac{R}{1+(\omega \cdot C\cdot R)^2}=\frac{160\,\ohm}{(5648\cdot \cancel{\power{\second}{-1}}\cdot 2\cdot \power{10}{-6}\,\cancel{\frac{\second}{\ohm}}\cdot 160\,\cancel{\ohm})^2+1}=\uuline{37{,}5\,\ohm} \end{align*} \clearpage }{}%