\section {Effektivwert und Klirrfaktor} \begin{minipage}[c]{.7\textwidth} Bild 1 zeigt einen Teil aus dem Ersatzschaltbild eines Transformators, aus dem hervorgeht, dass sich der Leerlaufstrom $i_0(t)$ zusammensetzt aus dem (verzerrten) Magnetisierungsstrom $i_\mu(t)$ und dem Strom $i_{Fe}(t)$, der die Eisenverluste repräsentiert. \end{minipage} \begin{minipage}[c]{.3\textwidth} \begin{align*} \begin{tikzpicture}[scale=1.5] \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm,rotate=90]%Spule | \draw (0,0)--(.3,0) (.7,0)--(1,0)node at(.5,-.0667) [right] {$L_{1h}$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \draw [<-,red] (.75,.1)--(.95,.1)node at(.85,.1)[left]{\footnotesize$i_{\mu}(t)$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R_{Fe}$}; \draw [<-,red] (.75,-.1)--(.95,-.1)node at(.85,-.1)[right]{\footnotesize$i_{Fe}(t)$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen. \draw(0,.1)--(0,0)--(1,0)--(1,.1)(0,.9)--(0,1)--(1,1)--(.9,1)(.5,1)--(.5,1.5)(.5,0)--(.5,-.5); \fill (0.5,0)circle(0.025cm)(.5,1)circle(0.025cm); \draw [<-,red] (.6,-.35)--(.6,-.15)node at(.6,-.25)[right]{\footnotesize$i_{0}(t)$}; \end{scope} \draw node at (.5,-1){Bild 1}; \end{tikzpicture} \end{align*} \end{minipage} Bild 2 zeigt die zeitlichen Verläufe von $i_\mu(t)$ und $i_{Fe}(t)$, welche durch folgende Fourier-Reihen approximiert werden können:\\ $i_\mu(t)=10\,\milli\ampere\cdot \cos(\omega t) + 2,88\,\milli\ampere\cdot \cos(3\omega t)$;\\ $i_{Fe}(t)=-4\,\milli\ampere\cdot \sin(\omega t)$\\[\baselineskip] Der resultierende, in Bild 3 dargestellte Leerlaufstrom ist die Summe:\\ $i_0(t)= i_\mu(t)+i_{Fe}(t)$ \begin{align*} % \begin{tikzpicture}[scale=1.5] % \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm,rotate=90]%Spule | % \draw (0,0)--(.3,0) (.7,0)--(1,0)node at(.5,-.0667) [right] {$L_{1h}$}; % \fill (.3,-0.0667)rectangle(.7,0.0667); % \draw [<-,red] (.75,.1)--(.95,.1)node at(.85,.1)[left]{\footnotesize$i_{\mu}(t)$}; % \end{scope} % \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90] % \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R_{Fe}$}; % \draw [<-,red] (.75,-.1)--(.95,-.1)node at(.85,-.1)[right]{\footnotesize$i_{Fe}(t)$}; % \end{scope} % \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen. % \draw(0,.1)--(0,0)--(1,0)--(1,.1)(0,.9)--(0,1)--(1,1)--(.9,1)(.5,1)--(.5,1.5)(.5,0)--(.5,-.5); % \fill (0.5,0)circle(0.025cm)(.5,1)circle(0.025cm); % \draw [<-,red] (.6,-.35)--(.6,-.15)node at(.6,-.25)[right]{\footnotesize$i_{0}(t)$}; % \end{scope} %\draw node at (.5,-1){Bild 1}; % \end{tikzpicture} \begin{tikzpicture}[scale=1.25] \begin{scope}[>=latex, xshift=0cm, yshift=0] \foreach \ii in {5} { % Enter Number of Decades in x \foreach \jj in {2.5} { % Enter Number of Decades in y \foreach \i in {1,2,...,\ii} { \foreach \j in {0,1,2,...,\jj} { \draw[black!50!, step=0.5] (0,-.5) grid (\ii,\jj); % Draw Sub Linear grid }}% End Log Grid \draw[black!80!] (0,-.5) grid (\ii,\jj); % Draw Linear grid \draw [->,thick] (0,-.5)--(0,\jj+.25) node (yaxis) [above] {$i\,[\milli\ampere]$}; \draw [->,thick] (0,1)--(\ii+.25,1) node (xaxis) [right] {$\omega t$}; % Draw axes \draw node at (0,-.5)[below]{$0$}; \draw node at (2,-.5)[below]{$\pi$}; \draw node at (4,-.5)[below]{$2\pi$}; \foreach \y in {-10,0,10}% y Axis Label: \node [anchor=east] at(0,\y/10+1){$\y$}; }} \end{scope} \begin{scope}[>=latex, xshift=0cm, yshift=1cm] \draw[color=red,thick,domain=0:5,smooth,samples=100] plot[id=iomega] function{1*cos(.5*3.14*x)+.288*cos(1.5*3.14*x)}; \draw[color=blue,thick,domain=0:5,smooth,samples=100] plot[id=iFe] function{-.4*sin(.5*3.14*x)}; \draw[red] node at (.825,1.25) {{\footnotesize $i_{\mu}(t)$}}; \draw[blue] node at (2.5,.75) {{\footnotesize $i_{Fe}(t)$}}; \end{scope} \draw node at (2.25,-1)[below]{Bild 2}; \end{tikzpicture} \begin{tikzpicture}[scale=1.25] \begin{scope}[>=latex, xshift=0cm, yshift=0] \foreach \ii in {5} { % Enter Number of Decades in x \foreach \jj in {2.5} { % Enter Number of Decades in y \foreach \i in {1,2,...,\ii} { \foreach \j in {0,1,2,...,\jj} { \draw[black!50!, step=0.5] (0,-.5) grid (\ii,\jj); % Draw Sub Linear grid }}% End Log Grid \draw[black!80!] (0,-.5) grid (\ii,\jj); % Draw Linear grid \draw [->,thick] (0,-.5)--(0,\jj+.25) node (yaxis) [above] {$i\,[\milli\ampere]$}; \draw [->,thick] (0,1)--(\ii+.25,1) node (xaxis) [right] {$\omega t$}; % Draw axes \draw node at (0,-.5)[below]{$0$}; \draw node at (2,-.5)[below]{$\pi$}; \draw node at (4,-.5)[below]{$2\pi$}; \foreach \y in {-10,0,10}% y Axis Label: \node [anchor=east] at(0,\y/10+1){$\y$}; }} \end{scope} \begin{scope}[>=latex, xshift=0cm, yshift=1cm] \draw[color=red!50!blue,thick,domain=0:5,smooth,samples=100] plot[id=iomega] function{1*cos(.5*3.14*x)+.288*cos(1.5*3.14*x)-.4*sin(.5*3.14*x)}; \draw[red!50!blue] node at (.825,1.25) {{\footnotesize $i_0(t)$}}; \end{scope} \draw node at (2.25,-1)[below]{Bild 3}; \end{tikzpicture} \end{align*} \renewcommand{\labelenumi}{\alph{enumi})} \begin{enumerate} \item Berechnen Sie Effektivwert und Klirrfaktor von $i_\mu(t)$ \item Berechnen Sie Effektivwert und Klirrfaktor von $i_0(t)$ \end{enumerate} \ifthenelse{\equal{\toPrint}{Lösung}}{% \begin{align} \intertext{Formeln:} k&=\frac{\sqrt{\sum \limits_{n=2}^{\infty}A^2_n}}{\sqrt{\sum \limits_{n=1}^{\infty}A^2_n}}=\frac{\text{Effektivwert der Oberschwingungen}}{\text{Effektivwert des Gesamtsignals}} \end{align} \clearpage Berechnung: \begin{align*} \intertext{a) Effektivwert $I_{\mu}$ und Klirrfaktor $k_{\mu}$} I_{\mu}&=\sqrt{I_{\mu,\omega}^{\phantom{\mu}2}+I_{\mu,3\omega}^{\phantom{\mu}2}} =\sqrt{\left(\frac{\widehat{i}_{\mu,\omega}}{\sqrt{2}}\right)^2 +\left(\frac{\widehat{i}_{\mu,3\omega}}{\sqrt{2}}\right)^2} =\frac{1}{\sqrt{2}}\cdot \sqrt{(10\,\milli\ampere)^2+(2{,}88\,\milli\ampere)^2}=\uuline{7{,}36\,\milli\ampere}\\ %I_{\mu}&=\sqrt{I_{\mu,\omega}^{\phantom{\mu}2}+I_{\mu,3\omega}^{\phantom{\mu}2}}=\frac{1}{\sqrt{2}}\cdot \sqrt{\widehat{i}_{\mu,\omega}^{\phantom{\mu}2}+\widehat{i}_{\mu,3\omega}^{\phantom{\mu}2}}=\frac{1}{\sqrt{2}}\cdot \sqrt{(10\,\milli\ampere)^2+(2{,}88\,\milli\ampere)^2}=\uuline{7{,}36\,\milli\ampere}\\ k_{\mu}&=\frac{I_{\mu,3\omega}}{I_{\mu}} =\frac{\widehat{i}_{\mu,3\omega}\cancel{/\sqrt{2}}}{\sqrt{\widehat{i}_{\mu,\omega}^{\phantom{\mu}2} +\widehat{i}_{\mu,3\omega}^{\phantom{\mu}2}}\cancel{/\sqrt{2}}} =\frac{2{,}88\,\milli\ampere}{\sqrt{(10\,\milli\ampere)^2+(2{,}88\,\milli\ampere)^2}}=\uuline{0{,}277}=\uuline{27{,}7\%}\\ \end{align*} \begin{minipage}[c]{.8\textwidth} \begin{align*} \intertext{b) Effektivwert $I_0$ und Klirrfaktor $k_0$} \widehat{i}_{0,3\omega}&=\widehat{i}_{\mu,3\omega}=2{,}88\,\milli\ampere\\ \intertext{Nulldurchgang von $\widehat{i}_{Fe}$ bei den Spitzenwerten}\\ \widehat{i}_{0,\omega}&=\sqrt{\widehat{i}_{\mu,\omega}^{\phantom{\mu}2}+\widehat{i}_{Fe,\omega}^{\phantom{Fe}2}}\\ &=\sqrt{(10\,\milli\ampere)^2+(4\,\milli\ampere)^2}=10{,}77\,\milli\ampere\\[\baselineskip] I_0&=\frac{1}{\sqrt{2}}\cdot \sqrt{\widehat{i}_{0,\omega}^{\phantom{\mu}2}+\widehat{i}_{0,3\omega}^{\phantom{\mu}2}}=\frac{1}{\sqrt{2}}\cdot \sqrt{(10{,}77\,\milli\ampere)^2+(2{,}88\,\milli\ampere)^2}=\uuline{7{,}88\,\milli\ampere}\\ k_0&=\frac{\widehat{i}_{0,3\omega}\cancel{/\sqrt{2}}}{\sqrt{\widehat{i}_{0,\omega}^{\phantom{\mu}2}+\widehat{i}_{0,3\omega}^{\phantom{\mu}2}}\cancel{/\sqrt{2}}} =\frac{2{,}88\,\milli\ampere}{\sqrt{(10{,}77\,\milli\ampere)^2+(2{,}88\,\milli\ampere)^2}}=\uuline{0{,}258}=\uuline{25{,}8\%} \end{align*} \end{minipage} \begin{minipage}[c]{.2\textwidth} \begin{tikzpicture}[scale=1.2] \begin{scope}[>=latex, xshift=2cm, yshift=5] \draw[dashed](0,-2)rectangle(1,0); \draw[->,blue](0,0)--(1,0)node[right]{$\widehat{i}_{Fe,\omega}$}; \draw[->,red](0,0)--(0,-2)node[below]{$\widehat{i}_{\mu,\omega}$}; \draw[->,red!50!blue](0,0)--(1,-2)node[below right]{$\widehat{i}_{0,\omega}$}; \end{scope} \end{tikzpicture} \end{minipage}\\[\baselineskip] \uline{Nicht gefragt}\\[\baselineskip] Typische Klirrfaktoren:\\ Rechteckschwingung $33\%$\\ Sprache noch verständlich $10\%$\\ Max. HiFi Verstärker $1\%$\\ Guter HiFi Verstärker $0{,}1\%$\\ Weiteres unter \url{http://de.wikipedia.org/wiki/Klirrfaktor} \clearpage }{}%