\section {Gleichungen in Matrizenschreibweise} Die Spannungen am gegebenen Netzwerk sollen mit Hilfe des Knotenpotenzialverfahrens berechnet werden. Stellen Sie die Gleichungen in Matrizenschreibweise auf.\\ $R=2\,\kilo\ohm;\quad C=5\,\nano\farad \quad L=2{,}5\,\milli\henry; $\\ $f=63{,}662\,\kilo\hertz;$\\ $\uline{I}_1=7\,\milli\ampere;\quad \uline{U}_2=3\,\volt\cdot e^{j90\,\degree} \quad \uline{I}_3= 5\milli\ampere \cdot e^{-j90\,\degree}$ \begin{align*} \begin{tikzpicture}[scale=1.5] \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm,rotate=90]%Spule | \draw (0,0)--(.3,0) (.7,0)--(1,0)node at(.5,-.0667) [right] {$L$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=1cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=2cm,rotate=90]%Spannungsquelle | \draw (0,0)--(1,0); \draw (.5,0)circle(.133); \draw [->,blue] (.3,.2)--(.7,.2) node at (.5,.2)[left]{$\uline{U}_{2}$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=3cm,rotate=90]%Kondensator | \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,-.133) [right] {$C$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=2cm]%Widerstand \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=2cm]%Kondensator - \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,.133) [above] {$C$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=2cm]%Spule - \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$L$}; \fill (.3,-0.0667)rectangle(.7,0.0667); \end{scope} \begin{scope}[>=latex,very thick,xshift=3cm,yshift=0.5cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=3cm,yshift=2.5cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=4cm,yshift=.5cm,rotate=90]%Kondensator | \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,-.133) [right] {$C$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=4cm,yshift=2.5cm,rotate=90]%Stromquelle \draw (0,0)--(.367,0) (.5,-.133)--(.5,.133) (.633,0)--(1,0); \draw (.5,0)circle(.133); \draw [<-,red] (.3,-.2)--(.7,-.2) node at (.5,-.2)[right]{$\uline{I}_3$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen. \draw (0,.2)--(0,0)--(4,0)--(4,.7) (0,3.8)--(0,4)--(4,4)--(4,3.4)(4,1.2)--(4,2.7) (3,0)--(3,.7)(3,1.2)--(3,2.7)(3,2)--(4,2)(3,3.2)--(3,4)(1,0)--(1,-.2)(.9,-.2)--(1.1,-.2); \fill(0,2)circle(0.05cm)(3,2)circle(0.05cm)(4,2)circle(0.05cm)(3,0)circle(0.05cm) (4,0)circle(0.05cm)(3,4)circle(0.05cm)(4,4)circle(0.05cm)(0,4)circle(0.05cm)(1,0)circle(0.05cm); \draw(0,4)--+(135:.5cm)(4,0)--+(225:.5cm); \draw[<-,red](0,4)--+(135:.25cm)node[above right]{$\uline{I}_1$}; \draw[->,red](4,0)--+(225:.25cm)node[below right]{$\uline{I}_0$}; \end{scope} \draw[magenta](0,2)node[left]{$1$}; \draw[magenta](4,2)node[right]{$3$}; \draw[magenta](3,4)node[above]{$2$}; \draw[magenta](3,0)node[below]{$0$}; \end{tikzpicture} \end{align*} \ifthenelse{\equal{\toPrint}{Lösung}}{% %\begin{align} %\intertext{Formeln:} %\end{align} Berechnung: \begin{align*} \begin{tikzpicture}[scale=1.5] \begin{scope}[>=latex,very thick,xshift=0cm,yshift=.5cm,rotate=90]%Stromquelle \draw (0,0)--(.367,0) (.5,-.133)--(.5,.133) (.633,0)--(1,0); \draw (.5,0)circle(.133); \draw [->,red] (.3,-.2)--(.7,-.2) node at (.5,-.2)[right]{$\uline{I}_1$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$\uline{Y}_{10}$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=1cm,yshift=1cm,rotate=90]%Stromquelle \draw (0,0)--(.367,0) (.5,-.133)--(.5,.133) (.633,0)--(1,0); \draw (.5,0)circle(.133); \draw [<-,red] (.3,-.2)--(.7,-.2) node at (.5,-.2)[right]{$\uline{I}_2$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=1cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$\uline{Y}_{12}$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=3cm,yshift=1cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$\uline{Y}_{23}$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=4cm,yshift=1cm,rotate=90]%Stromquelle \draw (0,0)--(.367,0) (.5,-.133)--(.5,.133) (.633,0)--(1,0); \draw (.5,0)circle(.133); \draw [<-,red] (.3,-.2)--(.7,-.2) node at (.5,-.2)[right]{$\uline{I}_3$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=2cm,yshift=1cm]%Widerstand \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [below] {$\uline{Y}_{13}$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=4cm,yshift=0cm,rotate=90] \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$\uline{Y}_{30}$}; \end{scope} \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen. \draw (0,.7)--(0,0)--(4,0)--(4,.2) (0,1.3)--(0,2)--(4,2)--(4,1.8)(1,1)--(2,1) (3,1)--(4,1); \draw[magenta](1,1)node[left]{$1$}; \draw[magenta](4,1)node[right]{$3$}; \draw[magenta](2.5,2)node[above]{$2$}; \draw[magenta](2.5,0)node[below]{$0$}; \end{scope} \end{tikzpicture} \end{align*} \begin{align*} \left[\begin{array}{c}\uline{Y}\\ \end{array} \right]\cdot \left[\begin{array}{c}\uline{U}\\ \end{array}\right] &=\left[\begin{array}{c} -\sum{\uline{I}_q}\\ \end{array}\right]\\ \end{align*} $\uline{I}_0\stackrel{!}{=}\uline{I}_1$ wegen Gleichgewicht. Abfließende Quellströme positiv. \clearpage \begin{align*} G&=\frac{1}{R}=0{,}5\,\milli\siemens\\ \omega&=2\pi\cdot f=0{,}4\cdot \power{10}{-6}\cdot \frac{1}{\second}\\ X_C&=\frac{-1}{\omega C}=-0{,}5\,\kilo\ohm\\ \Rightarrow\quad B_C&=\omega C=2{,}0\,\milli\siemens\\ X_L&=\omega L=1{,}0\,\kilo\ohm\\ \Rightarrow\quad B_L&=\frac{-1}{\omega L}=-1{,}0\,\milli\siemens\\[\baselineskip] \uline{Y}_{10}&=\frac{1}{R+jX_L}=\frac{1}{(2+j1)\,\kilo\ohm}&=(0{,}4-j0{,}2)\,\milli\siemens\\ \uline{Y}_{30}&=G+jB_C&=(0{,}5+j2{,}0)\,\milli\siemens\\ \uline{Y}_{13}&=\frac{1}{R+j(X_L+X_C)}=\frac{1}{[2+j(1-0{,}5)]\,\kilo\ohm}&=(0{,}4706-j0{,}1176)\,\milli\siemens\\ \uline{Y}_{12}&=jB_C=2\,\milli\siemens\cdot e^{j90\,\degree}&=(0+j2{,}0)\,\milli\siemens\\ \uline{Y}_{23}&=G&=(0{,}5+j0)\,\milli\siemens\\[\baselineskip] \uline{I}_1&=7\,\milli\ampere \cdot e^{j0\,\degree}&=(7-j0)\,\milli\ampere\\ \uline{I}_2&=\uline{Y}_{12}\cdot \uline{U}_2=2\,\milli\siemens\cdot e^{j90\,\degree}\cdot 3\,\volt\cdot e^{j90\,\degree}=6\,\milli\ampere \cdot e^{j180\,\degree}&=(-6+j0)\,\milli\ampere\\ \uline{I}_3&=5\,\milli\ampere \cdot e^{-j90\,\degree}&=(0-j5)\,\milli\ampere\\ \end{align*} %\scriptsize \begin{align*} &\left( \begin{array}{ccc} \uline{Y}_{10}+\uline{Y}_{12}+\uline{Y}_{13} & -\uline{Y}_{12} & -\uline{Y}_{13} \\ -\uline{Y}_{12} & \uline{Y}_{12}+\uline{Y}_{23} & -\uline{Y}_{23} \\ -\uline{Y}_{13} & -\uline{Y}_{23} & \uline{Y}_{30}+\uline{Y}_{13}+\uline{Y}_{23} \\ \end{array} \right) \left( \begin{array}{c} \uline{U}_{10} \\ \uline{U}_{20} \\ \uline{U}_{30} \\ \end{array} \right)= \left( \begin{array}{c} \uline{I}_2\\ \uline{I}_1-\uline{I}_2-\uline{I}_3\\ \uline{I}_3\\ \end{array} \right)\\ \end{align*} \scriptsize \begin{align*} &\left( \begin{array}{ccc} (0{,}8706+j1{,}6824) & (0-j2) & (-0{,}4706+j0{,}1176) \\ (0-j2) & (0{,}5+j2{,}0) & (0{,}5+j0) \\ (-0{,}4706-j0{,}1176) & (0{,}5+j0) & (1{,}4706+j1{,}8823) \\ \end{array} \right)\,\milli\siemens \left( \begin{array}{c} \uline{U}_{10} \\ \uline{U}_{20} \\ \uline{U}_{30} \\ \end{array} \right)= \left( \begin{array}{c} (6-j0)\\ (13+j5)\\ (0-j5)\\ \end{array} \right)\,\milli\ampere \end{align*} \normalsize \clearpage }{}%