53 lines
3.1 KiB
TeX
53 lines
3.1 KiB
TeX
\section{Komplexe Wechselstromrechnung Netzwerk Strom}
|
|
Berechnen sie den Strom $I_2$\\
|
|
$I_0=3\,\milli\ampere \cdot e^{-j30\,\degree}\qquad C_1= 1{,}2\,\nano\farad \qquad L=100\,\micro\henry$\\
|
|
$R=9,3\,\ohm \qquad C_2=820\,\pico\farad \qquad f=570\,\kilo\hertz$\\
|
|
Hinweis: Rechnung nur mit komplexen Größen\\
|
|
Kann $I_2$ größer als $I_0$ sein? Wenn ja, warum?\\
|
|
\ifthenelse{\equal{\toPrint}{Lösung}}{%
|
|
%\begin{align}
|
|
%\intertext{Formeln:}
|
|
%\end{align}
|
|
\begin{align*}
|
|
\begin{tikzpicture}[scale=2]
|
|
\begin{scope}[>=latex,very thick,xshift=0cm,yshift=-.5cm,rotate=90]%Stromquelle
|
|
\draw (0,0)--(.367,0) (.5,-.133)--(.5,.133) (.633,0)--(1,0)node at(.5,-.133)[right]{$I_0$};
|
|
\draw (.5,0)circle(.133);
|
|
\draw [<-,red] (.3,.2)--(.7,.2) node at (.5,.2)[left]{\footnotesize$\uline{I}_{0}$};
|
|
\end{scope}
|
|
\begin{scope}[>=latex,very thick,xshift=0cm,yshift=1cm]%Kondensator -
|
|
\draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,.133) [above] {$C_1$};
|
|
\end{scope}
|
|
\begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90]%Spule |
|
|
\draw (0,0)--(.3,0) (.7,0)--(1,0)node at(.5,-.0667) [right] {$L$};
|
|
\fill (.3,-0.0667)rectangle(.7,0.0667);
|
|
\end{scope}
|
|
\begin{scope}[>=latex,very thick,xshift=1cm,yshift=-1cm,rotate=90]
|
|
\draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R$};
|
|
\draw [->,red] (.3,.2)--(.7,.2)node at(.5,.2)[left]{$\uline{I}_{1}$};
|
|
\end{scope}
|
|
\begin{scope}[>=latex,very thick,xshift=2cm,yshift=-.5cm,rotate=90]%Kondensator |
|
|
\draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,-.133) [right] {$C_2$};
|
|
\draw [<-,red] (.3,.2)--(.7,.2) node at (.5,.2)[left]{$\uline{I}_{2}$};
|
|
\draw [->,red] (-.2,.2)--(.2,.2) node at (0,.2)[left]{$\uline{I}_{2'}$};
|
|
\end{scope}
|
|
\begin{scope}[>=latex,very thick,xshift=0cm,yshift=-.25cm]%Fehlstellen Eckverbindungen.
|
|
\draw (0,.75)--(0,1.25)--(.2,1.25) (2,.75)--(2,1.25)--(.8,1.25) (0,0)--(0,-1)-- (2,-1)--(2,0) (1,-1)--(1,-.5);
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
\end{align*}
|
|
\begin{align*}
|
|
\intertext{Berechnung:}
|
|
C_1&\text{ spielt keine Rolle, da in Reihe mit Stromquelle.}\\
|
|
\uline{I_2}&=-\uline{I}_2'\quad\text{, wegen Knotenpunkt $\uline{I}_0-\uline{I}_1'-\uline{I}_2'=0$}\\
|
|
\uline{I_2}&=-\uline{I}_2'=-\frac{R+jX_L}{R+j(X_L+X_{C_2})}\cdot \uline{I}_0\\
|
|
\text{mit }X_{C_2}&=\frac{-1}{\omega C_2}=-\frac{1}{2\pi\cdot 570\cdot \power{10}{3}\cdot 820\cdot \power{10}{-12}}\,\ohm=-340{,}51\,\ohm\\
|
|
X_L&=\omega \cdot L=2\pi\cdot 570\cdot \power{10}{3}\cdot \power{10}{-4}\,\ohm= +358{,}14\,\ohm\\
|
|
X_{C_2}+X_L&=(-340{,}51+358{,}14)\,\ohm=17{,}63\,\ohm\\
|
|
\uline{I_2}&=-\frac{9{,}3\,\ohm +j 358{,}14\,\ohm}{9{,}3\,\ohm +j 17{,}63\,\ohm}\cdot 3\,\milli\ampere \cdot e^{-j30\,\degree}=(-16{,}11+j7{,}97)\cdot 3\,\milli\ampere\cdot e^{-j30\,\degree}\\
|
|
&=17{,}97\cdot e^{-j153{,}7\,\degree}\cdot 3\,\milli\ampere\cdot e^{-j30\,\degree}=\uuline{53{,}92\,\milli\ampere\cdot e^{j176{,}32\,\degree}}\\
|
|
\uline{I}_2&>\uline{I}_0\text{, da sehr nahe an Resonanz $(X_L\approx |X_C|$)}
|
|
\end{align*}
|
|
\clearpage
|
|
}{}%
|