ET2_Uebung_BEI/ET2_L_B15_A2rekap.tex
2022-02-24 12:16:45 +01:00

71 lines
3.2 KiB
TeX

\ifthenelse{\equal{\toPrint}{Lösung}}{%
\section*{Rekapitulieren}
\textbf{Zusammenfassung} An Tafel rekapitulieren\\[\baselineskip]
\uline{1. Transformation:}$\quad u(t) \Rightarrow \uline{U}$\\[\baselineskip]
\uline{2. Lösung komplexer algebraischer Gleichungen:} Rechnung mit komplexem Effektivwert.\\[\baselineskip]
\uline{3. Rücktransformation:}$\quad\uline{I}_L\Rightarrow i_L(t)$\\[\baselineskip]
%&\uline{U}\qquad \text{komplexer Effektivwert}\\
%&U\qquad \text{Betrag $=$ Effektivwert $(U=\frac{\widehat{u}}{\sqrt{2}})$}
\begin{align*}
\begin{tikzpicture}[scale=1.25]
\begin{scope}[>=latex, xshift=0cm, yshift=3.5cm]
\draw node at (7,.5)[right]{$\uline{U}$ komplexer Effektivwert};
\draw node at (7,0)[right]{$U=|\uline{U}|=\frac{\widehat{u}}{\sqrt{2}}$ Effektivwert};
\end{scope}
\begin{scope}[>=latex, xshift=0cm, yshift=-7cm]
\draw node at (0,0)[right]{$\widehat{i}_L\qquad$ Scheitelwert $(\,\widehat{i}_L={\sqrt{2}}\cdot I_L)$};
\draw node at (0,-.5)[right]{$\uline{I_L}\qquad$ komplexer Effektivwert};
\end{scope}
\begin{scope}[>=latex, xshift=0cm, yshift=0cm]
\draw (0,0)rectangle(4,2)node at(2,2)[above] {Zeitbereich};
\draw node at (2,1){$u(t)=\widehat{u}\cdot \cos(\omega t+\varphi_u)$};
\end{scope}
\begin{scope}[>=latex, xshift=7cm, yshift=0cm]
\draw (0,0)rectangle(4,2)node at(2,2)[above] {Komplexer Bildbereich};
\draw node at (2,1.25){$\uline{U}=U\cdot e^{j\varphi_u}$};
\draw node at (2,.75){mit $U=\frac{\widehat{u}}{\sqrt{2}}$};
\end{scope}
\begin{scope}[>=latex, xshift=0, yshift=-3cm]
\draw (0,0)rectangle(4,2);
\draw node at (2,1.5){Lösen von};
\draw node at (2,1){Differentialgleichungen};
\draw node at (2,.5){ist schwierig};
\end{scope}
\begin{scope}[>=latex, xshift=7cm, yshift=-3cm]
\draw (0,0)rectangle(4,2);
\draw node at (2,1.5){Lösen von};
\draw node at (2,1){komplexen algebraischen};
\draw node at (2,.5){Gleichungen};
\end{scope}
\begin{scope}[>=latex, xshift=0, yshift=-6cm]
\draw (0,0)rectangle(4,2);
\draw node at (2,1.5){Beachte $\omega t$ [rad] $\varphi$ [\degree]};
\draw node at (2,1){$i_L(t)=\widehat{i}_L\cdot \cos(\omega t+\varphi_{I_L})$};
\draw node at (2,.5){mit $\widehat{i}_L=\sqrt{2}\cdot \uline{I}_L$};
\end{scope}
\begin{scope}[>=latex, xshift=7cm, yshift=-6cm]
\draw (0,0)rectangle(4,2);
\draw node at (2,1){$\uline{I}_L=I_L\cdot e^{j\varphi_{I_L}}$};
\end{scope}
\begin{scope}[>=latex,very thick, xshift=0, yshift=0cm]
\draw [->,red,dashed](2,0)--(2,-1);
\end{scope}
\begin{scope}[>=latex,very thick, xshift=0, yshift=0cm]
\draw [->](4,1)--(7,1)node at (5.5,1)[above]{Transformation};
\end{scope}
\begin{scope}[>=latex,very thick, xshift=0, yshift=-3cm]
\draw [->,red,dashed](2,0)--(2,-1);
\end{scope}
\begin{scope}[>=latex,very thick, xshift=0, yshift=-6cm]
\draw [<-](4,1)--(7,1)node at (5.5,1)[above]{Rücktransformation};
\end{scope}
\begin{scope}[>=latex,very thick, xshift=7cm, yshift=0cm]
\draw [->](2,0)--(2,-1);
\end{scope}
\begin{scope}[>=latex,very thick, xshift=7cm, yshift=-3cm]
\draw [->](2,0)--(2,-1);
\end{scope}
\end{tikzpicture}
\end{align*}
\clearpage
}{}%