105 lines
5.5 KiB
TeX
105 lines
5.5 KiB
TeX
\section{Abgebbare Wirkleistung}
|
||
Um wieviel Prozent weicht die in dem passiven Zweipol umgesetzte Wirkleistung von der in dem aktiven Zweipol maximal abgebbaren Wirkleistung ab?\\
|
||
$C_1=2\,\nano\farad\quad
|
||
C_2=3\,\nano\farad\quad
|
||
L_1=2{,}5\,\micro\henry\quad
|
||
R_1=20\,\ohm\quad
|
||
L_2=3\,\micro\henry\quad
|
||
R_1=15\,\ohm\quad
|
||
f=3\,\mega\hertz$\\
|
||
\begin{align*}
|
||
\begin{tikzpicture}[scale=2]
|
||
\begin{scope}[>=latex,very thick,xshift=0cm,yshift=.5cm,rotate=90]%Stromquelle
|
||
\draw (0,0)--(.367,0) (.5,-.133)--(.5,.133) (.633,0)--(1,0)node at(.5,-.133)[right]{$\uline{I}$};
|
||
\draw (.5,0)circle(.133);
|
||
\draw [->,red] (.3,.2)--(.7,.2) node at (.5,.2)[left]{\footnotesize$\uline{I}$};
|
||
\end{scope}
|
||
\begin{scope}[>=latex,very thick,xshift=0cm,yshift=2cm]%Kondensator -
|
||
\draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,.133) [above] {$C_1$};
|
||
\end{scope}
|
||
\begin{scope}[>=latex,very thick,xshift=1cm,yshift=.5cm,rotate=90]%Kondensator |
|
||
\draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,-.133) [right] {$C_2$};
|
||
\end{scope}
|
||
\begin{scope}[>=latex,very thick,xshift=2cm,yshift=1cm,rotate=90]%Spule |
|
||
\draw (0,0)--(.3,0) (.7,0)--(1,0)node at(.5,-.0667) [right] {$L_1$};
|
||
\fill (.3,-0.0667)rectangle(.7,0.0667);
|
||
\end{scope}
|
||
\begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm,rotate=90]
|
||
\draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R_1$};
|
||
\end{scope}
|
||
\begin{scope}[>=latex,very thick,xshift=3cm,yshift=1cm,rotate=90]%Spule |
|
||
\draw (0,0)--(.3,0) (.7,0)--(1,0)node at(.5,-.0667) [right] {$L_2$};
|
||
\fill (.3,-0.0667)rectangle(.7,0.0667);
|
||
\end{scope}
|
||
\begin{scope}[>=latex,very thick,xshift=3cm,yshift=0cm,rotate=90]
|
||
\draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R_2$};
|
||
\end{scope}
|
||
\begin{scope}[>=latex,very thick, xshift=0, yshift=0cm]
|
||
\draw(0,1.5)--(0,2)--(.1,2)(1,2)--(3,2)--(3,1.9)(1,1.5)--(1,2);
|
||
\draw(0,.5)--(0,0)--(3,0)--(3,.1)(1,0)--(1,.5);
|
||
\fill (2.5,2)circle(.05);
|
||
\fill (2.5,0)circle(.05);
|
||
\draw [thin,dashed](-.45,-.2)rectangle(2.4,2.5);
|
||
\draw [thin,dashed](2.6,-.2)rectangle(3.45,2.5);
|
||
\draw node at(1,-.25)[below]{Aktiver Zweipol};
|
||
\draw node at(3,-.25)[below]{Passiver};
|
||
\draw node at(3,-.5)[below]{Zweipol};
|
||
\end{scope}
|
||
\end{tikzpicture}
|
||
\end{align*}
|
||
\ifthenelse{\equal{\toPrint}{L<EFBFBD>sung}}{%
|
||
%%\begin{align}
|
||
%%\intertext{Formeln:}
|
||
%%\end{align}
|
||
Berechnung:\\[\baselineskip]
|
||
$C_1$ spielt f<>r die Berechnung der Wirkleistung keine Rolle, da in Reihe zu Stromquelle.\\[\baselineskip]
|
||
ESB:
|
||
\begin{align*}
|
||
\begin{tikzpicture}[scale=3]
|
||
\begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm,rotate=90]%Spannungsquelle |
|
||
\draw (0,0)--(1,0)node at(.5,-.133)[right]{$U_q$};
|
||
\draw (.5,0)circle(.133);
|
||
\draw [<-,blue] (.3,.2)--(.7,.2) node at (.5,.2)[left]{\footnotesize$U_{q}$};
|
||
\end{scope}
|
||
\begin{scope}[>=latex,very thick,xshift=0cm,yshift=1cm]%Widerstand - nach EN 60617
|
||
\draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$\uline{Z}_i$};
|
||
\end{scope}
|
||
\begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90]
|
||
\draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$\uline{Z}_v$};
|
||
\end{scope}
|
||
\begin{scope}[>=latex,very thick, xshift=0, yshift=0]
|
||
\draw(0,.9)--(0,1)--(.1,1)(0,.1)--(0,0)--(1,0)--(1,.1);
|
||
\fill (1,1)circle(.05);
|
||
\fill (1,0)circle(.05);
|
||
\end{scope}
|
||
\end{tikzpicture}
|
||
\end{align*}
|
||
Als ESB ist eine Stromquelle $I_q$ mit parallelem $\underline{Z}_i$ und dazu parallelem $\underline{Z}_v$ m<>glich.
|
||
\clearpage
|
||
\begin{align*}
|
||
Z_{i}&=jX_C || (R_1 + jX_{L1})\\
|
||
\omega&=2\pi\cdot f=2\pi\cdot 3\,\mega\hertz=18{,}85\cdot \power{10}{6}\,\frac{1}{\second}\\
|
||
X_{C_2}&=\frac{-1}{\omega\cdot C_2}=\frac{-1}{18{,}85\cdot \power{10}{6}\,\cdot \frac{1}{\second}\cdot 3\,\nano\farad}=-17{,}68\,\ohm\\
|
||
X_{L_1}&=\omega\cdot L_1=18{,}85\cdot \power{10}{6}\,\frac{1}{\second}\cdot 2{,}5\,\micro\henry=47{,}12\,\ohm\\
|
||
X_{L_2}&=\omega\cdot L_2=18{,}85\cdot \power{10}{6}\,\frac{1}{\second}\cdot 3\,\micro\henry=56{,}55\,\ohm\\
|
||
\uline{Z}_i&=jX_{C_2}||(R_1+jX_{L_1})
|
||
=\frac{-j17{,}68\,\ohm\cdot (20\,\ohm+j47{,}12\,\ohm)}{-j17{,}68\,\ohm + 20\,\ohm+j47{,}12\,\ohm}
|
||
=\frac{-j17{,}68\cdot (20+j47{,}12)}{20+j(47{,}12-17{,}68)}\\
|
||
&=\frac{833{,}08-j353{,}6}{20+j29{,}44}\,\ohm=\frac{905{,}02\cdot e^{-j23{,}0\,\degree}}{35{,}59\,\ohm\cdot e^{j55{},81\,\degree}}=25{,}428\,\ohm\cdot e^{-j78{,}81\,\degree}=(4{,}935-j24{,}94)\,\ohm
|
||
\end{align*}
|
||
Verbraucherwiderstand:
|
||
\begin{align*}
|
||
\uline{Z}_v&=(15+j56{,}55)\,\ohm\\
|
||
\uline{Z}_{ges}&=\uline{Z}_i+\uline{Z}_v=(4{,}935-j24{,}94)\,\ohm+(15+j56{,}55)\,\ohm=(19{,}94+j31{,}61)\,\ohm\\
|
||
\intertext{Anmerkung: $\uline{U}_q$ ist unbekannt, k<>rzt sich sp<73>ter heraus.}
|
||
P_{v,max}&=\frac{U^2_q}{4\cdot R_i}=\frac{U^2_q}{4\cdot 4{,}935\,\ohm}=\frac{U^2_q}{19{,}94\,\ohm}\\
|
||
P_v&=I^2\cdot R_v\\
|
||
I&=\frac{U_q}{Z_{ges}}\qquad \text{Anmerkung: $I$ und $U_q$ Effektivwert; $Z$ Betrag}\\
|
||
P_v&=\left(\frac{U_q}{Z_{ges}}\right)^2 \cdot R_v =\frac{U^2_q}{(19{,}94^2+31{,}61^2)\,\ohm^2}\cdot 15\,\ohm=U^2_q\cdot \frac{15}{1397\,\ohm}\\
|
||
F_ \% &=100\,\%\cdot \frac{P_v-P_{v,max}}{P_{v,max}}=100\,\%\cdot \left(\frac{P_v}{P_{v,max}}-1\right)\\
|
||
&=100\, \% \cdot \left(\frac{\cancel{U^2_q}\cdot 15}{1397\,\ohm}\cdot \frac{19{,}94\,\ohm}{\cancel{U^2_q}}-1\right)\\
|
||
&=100\, \% \cdot (0{,}212-1)=\uuline{-78{,}8\, \%}
|
||
\end{align*}
|
||
\clearpage
|
||
}{}%
|