You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ET2_L_B18_A5.tex 8.3KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. \section {Netztransformator}
  2. Von einem Netztransformator sind folgende Daten gegeben:\\[.5\baselineskip]
  3. Primärspannung $U_1=230\,\volt$; Frequenz $f=50\,\hertz$;\\
  4. Primärwindungszahl $N_1=784$ Windungen.\\[.5\baselineskip]
  5. Induktivität der Primärwicklung $L_1=5{,}66\,\henry$; \\
  6. Induktivität der Sekundärwicklung $L_2=1{,}42\,\henry$; \\[.5\baselineskip]
  7. Widerstand der Primärwicklung $R_1=800\,\ohm$;\\
  8. Widerstand der Sekundärwicklung $R_2=150\,\ohm$.\\[.5\baselineskip]
  9. Eisenquerschnitt $A_{Fe}=11\,\centi\square\metre$. Das Feld ist über dem Querschnitt $A_{Fe}$ homogen, die Streuung ist Null!
  10. \renewcommand{\labelenumi}{\alph{enumi})}
  11. \begin{enumerate}
  12. \item Welche Spannung $U_2$ tritt an der Sekundärwicklung auf, wenn sie unbelastet ist, d.h. $I_2=0$ ist?
  13. \item Welchen Strom nimmt der Transformator bei sekundärseitigem Leerlauf auf?
  14. \item Welche Flussdichte $\widehat{B}_{Fe}$ tritt bei sekundärseitigem Leerlauf im Eisen auf?
  15. \end{enumerate}
  16. \ifthenelse{\equal{\toPrint}{Lösung}}{%
  17. %\begin{align}
  18. %\intertext{Formeln:}
  19. %\end{align}
  20. Berechnung:\\
  21. \begin{align*}
  22. \begin{tikzpicture}[scale=2]
  23. \begin{scope}[>=latex,very thick,xshift=0cm,yshift=1cm]%Widerstand
  24. \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_1$};
  25. \draw [->,red] (0,.1)--(.25,.1)node at(.125,.1)[above]{\footnotesize$\uline{I}_1$};
  26. \end{scope}
  27. \begin{scope}[>=latex,very thick,xshift=1cm,yshift=1cm]%Spule -
  28. \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$L_1$};
  29. \fill (.3,-0.0667)rectangle(.7,0.0667);
  30. \end{scope}
  31. \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm,rotate=90]%Spannungsquelle
  32. \draw (0,0)--(1,0);% node at (.5,-.133) [right] {$U_1$};
  33. \draw (.5,0)circle(.133);
  34. \draw [<-,blue] (.3,.2)--(.7,.2) node at (.5,.2)[left]{$j\omega M\cdot \uline{I}_2$};
  35. \end{scope}
  36. \begin{scope}[>=latex,very thick,xshift=2.5cm,yshift=0cm,rotate=90]%Spannungsquelle
  37. \draw (0,0)--(1,0);% node at (.5,-.133) [right] {$U_1$};
  38. \draw (.5,0)circle(.133);
  39. \draw [<-,blue] (.3,-.2)--(.7,-.2) node at (.5,-.2)[right]{$j\omega M\cdot \uline{I}_1$};
  40. \end{scope}
  41. \begin{scope}[>=latex,very thick,xshift=2.5cm,yshift=1cm]%Spule -
  42. \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$L_2$};
  43. \fill (.3,-0.0667)rectangle(.7,0.0667);
  44. \end{scope}
  45. \begin{scope}[>=latex,very thick,xshift=3.5cm,yshift=1cm]%Widerstand
  46. \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_2$};
  47. \draw [->,red] (1,.1)--(.75,.1)node at(.875,.1)[above]{\footnotesize$\uline{I}_2$};
  48. \end{scope}
  49. \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen.
  50. \draw (0,0)--(2,0)--(2,.2) (4.5,0)--(2.5,0)--(2.5,.2) (2,.8)--(2,1)--(1.8,1)(2.5,.8)--(2.5,1)--(2.6,1);
  51. \fill (0,0)circle(0.025cm)(0,1)circle(0.025cm)(4.5,0)circle(0.025cm)(4.5,1)circle(0.025cm);
  52. \draw [->,blue] (0,.8)--(0,.2) node at (0,.5)[left]{$\uline{U}_1$};
  53. \draw [->,blue] (4.5,.8)--(4.5,.2) node at (4.5,.5)[right]{$\uline{U}_2$};
  54. \end{scope}
  55. \end{tikzpicture}
  56. \end{align*}
  57. Ersatzschaltbild
  58. \begin{align*}
  59. \begin{tikzpicture}[scale=2]
  60. \begin{scope}[>=latex,very thick,xshift=0cm,yshift=1cm]%Widerstand
  61. \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_1$};
  62. \draw node at(.5,-.2){\footnotesize$800$};
  63. \end{scope}
  64. \begin{scope}[>=latex,very thick,xshift=1cm,yshift=1cm]%Spule -
  65. \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$X_{L_1}-X_M$};
  66. \fill (.3,-0.0667)rectangle(.7,0.0667);
  67. \draw node at(.5,-.2){\footnotesize$+j887$};
  68. \end{scope}
  69. \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm,rotate=90]%Spule |
  70. \draw (0,0)--(.3,0) (.7,0)--(1,0)node at(.5,.0667) [left] {$X_M$};
  71. \fill (.3,-0.0667)rectangle(.7,0.0667);
  72. \draw [<-,blue] (.3,-.2)--(.7,-.2)node at(.5,-.2)[right]{\footnotesize$\uline{U}_M$};
  73. \draw node at(.25,.25){\footnotesize$j891$};
  74. \end{scope}
  75. \begin{scope}[>=latex,very thick,xshift=2cm,yshift=1cm]%Spule -
  76. \draw (0,0)--(.3,0) (.7,0)--(1,0)node at (.5,.0667) [above] {$X_{L_2}-X_M$};
  77. \fill (.3,-0.0667)rectangle(.7,0.0667);
  78. \draw node at(.5,-.2){\footnotesize$-j445$};
  79. \end{scope}
  80. \begin{scope}[>=latex,very thick,xshift=3cm,yshift=1cm]%Widerstand
  81. \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_2$};
  82. \draw node at(.5,-.2){\footnotesize$150$};
  83. \end{scope}
  84. \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen.
  85. \draw (0,0)--(4,0);
  86. \fill (0,0)circle(0.025cm)(0,1)circle(0.025cm)(4,0)circle(0.025cm)(4,1)circle(0.025cm);
  87. \draw [->,blue] (0,.7)--(0,.3) node at (0,.5)[left]{$\uline{U}_1$};
  88. \draw [->,blue] (4,.7)--(4,.3) node at (4,.5)[right]{$\uline{U}_2$};
  89. \end{scope}
  90. \end{tikzpicture}
  91. \end{align*}
  92. \begin{enumerate}
  93. \item Spannung $U_2$
  94. \begin{align*}
  95. \uline{U}_1&=\uline{I}_1\cdot (R_1+j\omega\cdot L_1) +j\omega\cdot M\cdot \uline{I}_2\\
  96. \uline{U}_2&=\uline{I}_2\cdot (R_2+j\omega\cdot L_2)+j\omega\cdot M\cdot \uline{I}_1
  97. \end{align*}
  98. \footnotesize{Hinweis: Es kann auch $X_{L_1}=\omega\cdot L_1$ bzw. $X_M=\omega\cdot M$ verwendet werden.}\\
  99. \normalsize
  100. \clearpage
  101. \enlargethispage{2cm}
  102. \begin{align*}
  103. \text{mit }\uline{I}_2&=0\\
  104. \uline{U}_1&=\uline{I}_1\cdot (R_1+j\omega\cdot L_1)\\
  105. \uline{U}_2&=j\omega\cdot M\cdot \uline{I}_1 \\
  106. \Rightarrow\frac{\uline{U}_2}{\uline{U}_1}&=\frac{j\omega\cdot M}{R_1+j\omega\cdot L_1}\\
  107. U_2&=U_1\cdot \frac{\sqrt{(\omega\cdot M)^2}}{\sqrt{R^2_1+(\omega\cdot L_1)^2}}\qquad\text{(Betrag: }U_2=|\uline{U}_2|)\qquad \text{(1)}\\[.5\baselineskip]
  108. &\text{Streuung ist Null } \Rightarrow \text{Kopplungsfaktor }K=1=\frac{|M|}{\sqrt{L_1\cdot L_2}}\\
  109. \Rightarrow M&=\sqrt{L_1\cdot L_2}=\sqrt{5{,}66\cdot 1{,}42}\,\henry=2{,}835\,\henry\\
  110. X_{L_1}&=\omega\cdot L_1=2\cdot \pi\cdot 50\,\cancel{\power{\second}{-1}}\cdot 5{,}66\,\volt\cancel{\second}\per\ampere=1{,}778\,\kilo\ohm\quad\text{\footnotesize{(Zur Vollständigkeit $X_{L_2}=446\,\ohm$)}}\\
  111. X_{M}&=\omega\cdot M=2\cdot \pi\cdot 50\,\cancel{\power{\second}{-1}}\cdot 2{,}835\,\volt\cancel{\second}\per\ampere=891\,\ohm\\
  112. &\text{aus (1):} \Rightarrow U_2=\uline{U}_1\cdot \frac{X_M}{\sqrt{R^2_{1}+X^2_{L_1}}}=230\,\volt\cdot \frac{891}{\sqrt{800^2+1778^2}}=\uuline{105{,}1\,\volt}
  113. \end{align*}
  114. \item Stromaufnahme bei Leerlauf
  115. \vspace{-.25cm}
  116. \begin{align*}
  117. \uline{I}_1&=\frac{\uline{U}_1}{R_1+j\omega L_1}\\
  118. I_1&=\frac{U_1}{\sqrt{R^2_{1}+X^2_{L_1}}}=\frac{230\,\volt}{\sqrt{800^2+1778^2}}\,\frac{1}{\ohm}=\uuline{118\,\milli\ampere}\quad\text{(Betrag)}\\
  119. \end{align*}
  120. \begin{minipage}[c]{.62\textwidth}
  121. \item Flussdichte, Sekundärspule spielt keine Rolle bei $I_2=0$
  122. \vspace{-.25cm}
  123. \begin{align*}
  124. \psi&=L_1\cdot i=N_1\cdot \phi=N_1\cdot B\cdot A\\
  125. B&=\frac{L_1\cdot i}{N_1\cdot A}\\
  126. \widehat{B}&=\frac{L_1\cdot \widehat{I}}{N_1\cdot A_{Fe}}=\frac{5{,}66\,\volt\second\per\cancel{\ampere}\cdot \sqrt{2}\cdot 118\cdot \power{10}{-3}\,\cancel{\ampere}}{784\cdot 11\cdot \underbrace{\power{10}{-4}}_{(\power{10}{-2})^2}\,\metre^2}=\uuline{1{,}095\,\tesla}
  127. \end{align*}
  128. \end{minipage}%
  129. \begin{minipage}[c]{.33\textwidth}
  130. \begin{align*}
  131. \begin{tikzpicture}[scale=1.0]
  132. \draw(0,0)rectangle(1.5,1.5);
  133. \draw(.25,.25)rectangle(1.25,1.25);
  134. \draw[->,red](.25,1.375)--(.5,1.375)node at(.375,1.5)[above]{$\phi$};
  135. \draw[black!75!](1,1.25)--(1,1.5)node [above]{$A_{Fe}$};
  136. \draw[red!70!blue](0,.5)--(-.5,.5)(0,1)--(-.5,1)node [left]{$\uline{I}_1$};
  137. \fill[red!70!blue](0,.5)rectangle(.25,1)node at(.25,.75)[right]{$N_1$};
  138. \draw[red!70!blue](1.5,.5)--(2,.5)(1.5,1)--(2,1)node [right]{$\uline{I}_2=0$};
  139. \fill[red!70!blue](1.25,.5)rectangle(1.5,1)node at(1.25,.75)[left]{$N_2$};
  140. \end{tikzpicture}
  141. \end{align*}
  142. \end{minipage}
  143. Bemerkung:
  144. \begin{align*}
  145. U_{L_1}&=\frac{2\pi}{\sqrt{2}}\cdot f\cdot N_1\cdot \widehat{B}\cdot A_{Fe}=I_1\cdot \omega\cdot L_1=209{,}7\,\volt\\
  146. \widehat{B}&=\frac{2\pi}{\sqrt{2}}\cdot f\cdot \frac{U_1}{N_1\cdot A_{Fe}}=1{,}2\,\tesla \text{ ist falsch, gilt nur für idealen Transformator! }
  147. \end{align*}
  148. \footnotesize{Warum? Hier ist der Widerstand $R_1$ nicht berücksichtigt!\\
  149. Rechnung oben nur mit Beträgen, nicht im Komplexen.\\ $\uline{U}_1=\uline{U}_{R_1}+\uline{U}_{L_1}=(94{,}4+j209{,}7)\,\volt=230\,\volt\cdot e^{-j114{,}3}$}
  150. \end{enumerate}
  151. \clearpage
  152. }{}%