You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ET2_L_B19_A5.tex 5.9KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293
  1. \section {Momentanspannung}
  2. An die Schaltung wird die Spannung
  3. $u_E(t)=U_0+\widehat{u}_1\cdot \cos(\omega t+\varphi_1) + \widehat{u}_2\cdot \cos(2\omega t+\varphi_2)$
  4. angelegt.\\[.5\baselineskip]
  5. Berechnen Sie dies Spannung $u_C$ zur Zeit $t=T$\\
  6. \begin{minipage}[c]{.5\textwidth}
  7. \begin{align*}
  8. \begin{tikzpicture}[very thick,scale=2]
  9. \begin{scope}[>=latex,very thick,xshift=0cm,yshift=1cm]%Widerstand - nach EN 60617
  10. \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,.0667) [above] {$R_1$};
  11. % \draw [->,blue] (.3,-.2)--(.7,-.2)node at(.5,-.2)[below]{\footnotesize$U_{R}$};
  12. \end{scope}
  13. \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90]
  14. \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R_2$};
  15. \end{scope}
  16. \begin{scope}[>=latex,very thick,xshift=2cm,yshift=0cm,rotate=90]%Kondensator |
  17. \draw (0,0)--(.475,0) (.475,-.125)--(.475,.125) (.525,-.125)--(.525,.125) (.525,0)--(1,0)node at (.5,-.133) [right] {$C$};
  18. \end{scope}
  19. \draw(0,0)--(2.5,0)(1,1)--(2.5,1);
  20. \fill(0,0)circle(.025cm)(0,1)circle(.025cm)(2.5,0)circle(.025cm)(2.5,1)circle(.025cm);
  21. \draw[->,blue](0,.9)--(0,.1)node at(0,.5)[left]{$u_E$};
  22. \draw[->,blue](2.5,.9)--(2.5,.1)node at(2.5,.5)[right]{$u_C$};
  23. \end{tikzpicture}
  24. \end{align*}
  25. \end{minipage}
  26. \begin{minipage}[c]{.5\textwidth}
  27. \begin{align*}
  28. R_1&=12\,\ohm\quad R_2=20\,\ohm\\
  29. C&=25\,\nano\farad\quad \omega=961\cdot \power{10}{3}\,\frac{1}{\second}\\
  30. U_0&=6\,\volt\quad \widehat{u}_1=7\,\volt\quad \widehat{u}_2=3\,\volt\\
  31. \varphi_1&=60\,\degree\quad \varphi_2=135\,\degree\quad T=2\,\micro\second
  32. \end{align*}
  33. \end{minipage}
  34. \ifthenelse{\equal{\toPrint}{Lösung}}{%
  35. %\begin{align}
  36. %\intertext{Formeln:}
  37. %\end{align}
  38. Berechnung:\\[.5\baselineskip]
  39. Jede Frequenz für sich betrachten; Überlagerung der Momentanwerte\\[.5\baselineskip]
  40. $u_E(t)=6\,\volt+7\,\volt\cdot \cos(961\cdot 10^3\,\cdot 1\per\second\cdot t+60\degree)+3\,\volt\cdot \cos(2\cdot 961\cdot 10^3\,\cdot 1\per\second\cdot t+135\degree)$\\
  41. a) Gleichspannung - Spannungsteiler
  42. \begin{align*}
  43. %\intertext{a) Gleichspannung - Spannungsteiler}
  44. u_{C0}&=U_0\cdot \frac{R_2}{R_1+R_2}=6\,\volt\cdot \frac{20\,\ohm}{32\,\ohm}=3{,}75\,\volt
  45. \intertext{b) allgemein:}
  46. %\vspace{-1.5cm}
  47. \uline{U_C}&=\uline{U}_E\cdot \frac{\uline{Z}_{||}}{\uline{Z}_{||}+R_1}\\
  48. \uline{Z}_{||}&=\frac{R_2\cdot jX_C}{R_2+jX_C}
  49. \intertext{c) $1\cdot \omega$: Transformation in komplexe Ebene: $u(t)\rightarrow \uline{U}$}
  50. \uline{U}_{E1}&=\frac{7\,\volt}{\sqrt{2}}\cdot e^{j60\,\degree}=4{,}95\,\volt\cdot e^{j60\,\degree}=(2{,}47+j4{,}29)\,\volt\\
  51. X_{C1}&=\frac{-1}{\omega C}=-41{,}6\,\ohm\\
  52. \uline{Z}_{||1}&=\frac{20\,\ohm\cdot (-j41{,}6\,\ohm)}{20\,\ohm-j41{,}6\,\ohm}=\frac{-j832\,\ohm^2}{20\,\ohm-j41{,}6\,\ohm}\\
  53. &=\frac{828\,\ohm\cancel{^2}\cdot e^{-j90}}{45{,}98\cancel{\,\ohm}\cdot e^{-j64{,}22}}=18{,}05\,\ohm\cdot e^{-j25{,}67}=(16{,}27-j7{,}82)\,\ohm\\
  54. \uline{Z}_{||1}+R1&=(16{,}27-j7{,}82+12)\,\ohm=(28{,}27-j7{,}82)\,\ohm=29{,}33\,\ohm\cdot e^{-j15{,}52}\\
  55. \uline{U}_{C1}&=\uline{U}_{E1}\cdot \frac{\uline{Z}_{||1}}{\uline{Z}_{||1}+R_1}
  56. %&= 4{,}95\,\volt\cdot e^{j60\,\degree}\cdot \frac{(16{,}2-j7{,}834)\cancel{\,\ohm}}{(28{,}2-j7{,}834)\cancel{\,\ohm}}
  57. =4{,}95\,\volt\cdot e^{j60\,\degree}\cdot \frac{18{,}05\cancel{\,\ohm}\cdot e^{-j25{,}67}}{29{,}33\cancel{\,\ohm}\cdot e^{-j15{,}46\,\degree}}\\
  58. &=3{,}04\,\volt\cdot e^{j49{,}79\,\degree}=(1{,}97+j2{,}32)\,\volt\\
  59. U_{C1}&=3{,}04\,\volt\quad\text{Effektivwert}\\
  60. \varphi_{C1}&=49{,}79\,\degree=0{,}868\,\radian\quad\text{Umwandlung wegen } (\omega t+\varphi_{C1})
  61. \end{align*}
  62. \enlargethispage{2cm}
  63. \clearpage
  64. \begin{align*}
  65. \intertext{d) $1\cdot \omega$ Rücktransformation: mit $t=T$}
  66. \omega t+\varphi_{C1}&=\omega \cdot T+\varphi_{C1}=961\cdot \power{10}{3}\,\cancel{\frac{1}{\second}}\cdot 2\cdot \power{10}{-6}\,\cancel{\second}+0{,}868\,\radian=2{,}791\,\radian =159{,}9\,\degree\\
  67. u_{C1}(t=T)&=\sqrt{2}\cdot U_{C1}\cdot \cos(\omega T+\varphi_{C1})=\sqrt{2}\cdot 3{,}04\,\volt\cdot \cos(159{,}9\,\degree)\\
  68. &=4{,}3\,\volt\cdot (-0{,}939)=-4{,}037\,\volt
  69. \intertext{e) $2\cdot \omega$: Transformation in komplexe Ebene: $u(t)\rightarrow \uline{U}$}
  70. \uline{U}_{E2}&=\frac{3\,\volt}{\sqrt{2}}\cdot e^{j135\,\degree}=2{,}121\,\volt\cdot e^{j135\,\degree}=(-1{,}5+j1{,}5)\,\volt\\
  71. X_{C2}&=\frac{1}{2}\cdot X_{C1}=-20{,}8\,\ohm\\
  72. \uline{Z}_{||2}&=\frac{20\,\ohm\cdot (-j20{,}8\,\ohm)}{20\,\ohm-j20{,}8\,\ohm}=\frac{-j414\,\ohm^2}{20\,\ohm-j20{,}8\,\ohm}\\
  73. &=\frac{414\,\ohm\cancel{^2}\cdot e^{-j90}}{28{,}78\cancel{\,\ohm}\cdot e^{-j45{,}99}}=14{,}41\,\ohm\cdot e^{-j43{,}87}=(10{,}39-j9{,}992)\,\ohm\\
  74. \uline{Z}_{||2}+R1&=(10{,}39-j9{,}992+12)\,\ohm=(22{,}34-j9{,}992)\,\ohm=24{,}51\,\ohm\cdot e^{-j24\,\degree}\\
  75. \uline{U}_{C2}&=\uline{U}_{E2}\cdot \frac{\uline{Z}_{||2}}{\uline{Z}_{||2}+R_1}\\
  76. %&= 2{,}121\,\volt\cdot e^{j135\,\degree}\cdot
  77. &=\uline{U}_{E2}\cdot
  78. \frac{(10{,}39-j9{,}992)\cancel{\,\ohm}}{(22{,}39-j9{,}992)\cancel{\,\ohm}}
  79. =2{,}121\,\volt\cdot e^{j135\,\degree}\cdot \frac{14{,}38\cdot e^{-j44{,}01}}{24{,}48\cdot e^{-j24{,}1\,\degree}}\\
  80. &=1{,}247\,\volt\cdot e^{j115{,}1\,\degree}=(-0{,}530+j1{,}129)\,\volt\\
  81. U_{C2}&=1{,}247\,\volt\quad\text{Effektivwert}\\
  82. \varphi_{C2}&=115{,}1\,\degree=2{,}009\,\radian\quad\text{Umwandlung wegen } (2\cdot \omega t+\varphi_{C2})
  83. \intertext{f) $2\cdot \omega$ Rücktransformation: mit $t=T$}
  84. 2\cdot \omega t+\varphi_{C2}&=2\omega\cdot T+\varphi_{C2}=2\cdot 961\cdot \power{10}{3}\,\cancel{\frac{1}{\second}}\cdot 2\cdot \power{10}{-6}\,\cancel{\second}+2{,}009\,\radian\\
  85. &=5{,}854\,\radian =335{,}4\,\degree\\
  86. u_{C2}(t=T)&=\sqrt{2}\cdot U_{C2}\cdot \cos(2\cdot \omega T+\varphi_{C2})=\sqrt{2}\cdot 1{,}247\,\volt\cdot \cos(335{,}4\,\degree)\\
  87. &=1{,}762\,\volt\cdot 0{,}909=1{,}602\,\volt
  88. \intertext{g) Überlagerung:}
  89. u_C(t=T=2\,\micro\second)&=u_{C0}(T)+u_{C1}(T)+u_{C2}(T)=(3{,}75\,\volt-4{,}037\,\volt+1{,}602\,\volt)\\
  90. &=\uuline{1{,}315\,\volt}
  91. \end{align*}
  92. \clearpage
  93. }{}%