You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ET2_L_B19_A7.tex 3.8KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. \section {Wirkleistung Zweipol}
  2. An einem Zweipol liegt die dargestellte Spannung $u$. Es fließt der dargestellte Rechteckstrom $i$. Spannung und Strom sind periodisch und haben die gleiche Periodendauer.
  3. \begin{align*}
  4. \begin{tikzpicture}[scale=1]
  5. \begin{scope}[>=latex, xshift=-4cm, yshift=0]
  6. \draw(0,-1)rectangle(2,1);
  7. \draw(-.5,.75)--(0,.75);
  8. \draw(-.5,-.75)--(0,-.75);
  9. \draw[->,blue,thick](-.5,.5)--(-.5,-.5)node at(-.5,0)[left]{$u$};
  10. \draw[->,red,thick](-.5,.9)--(-.1,.9)node at(-.3,.9)[above]{$i$};
  11. \draw node at(1,0){Zweipol};
  12. \end{scope}
  13. \begin{scope}[>=latex, xshift=0cm, yshift=0]
  14. \draw[thin,black!50!](0,-1)grid(8,1);
  15. \draw[color=blue,thick,domain=0:8,samples=100] plot[id=sin19_7] function{sin(1.047*x)} node at (2,1) [above] {$u$};
  16. \draw[red, very thick] (0,-.5)--(1,-.5)--(1,.5)--(4,.5)--(4,-.5)--(7,-.5)--(7,.5)--(7,.5)--(8,.5)node at(4,.5)[above right]{i};
  17. \draw node at(0,1)[left]{$u_{max}$};
  18. \draw node at(0,.5)[left]{$iI_{max}$};
  19. \draw node at(0,-.5)[left]{$-i_{max}$};
  20. \draw node at(0,-1)[left]{$-u_{max}$};
  21. \draw node at(1,-1)[below]{$\frac{\pi}{3}$};
  22. \draw node at(4,-1)[below]{$\frac{4}{3}\pi$};
  23. \draw node at(7,-1)[below]{$\frac{7}{3}\pi$};
  24. \draw[->,thick,black](0,-1)--(0,1.25);
  25. \draw[->,thick,black](0,0)--(8.25,0)node [right]{$\omega t$};
  26. \draw node at(4,-1.75)[below]{$u_{max}=300\,\volt\qquad i_{max}=6\,\ampere$};
  27. \end{scope}
  28. \end{tikzpicture}
  29. \end{align*}
  30. Berechnen Sie die Wirkleistung, die der Zweipol aufnimmt. \\[\baselineskip]
  31. Hinweis: Unterschiedliche Lösungsverfahren sind möglich.
  32. falls benötigt: Der Strom $i$ kann durch folgende Fourier Reihe dargestellt werden:
  33. \begin{align*}
  34. i&=\frac{24\,\ampere}{\pi}\left[\sin\left(\omega t-\frac{\pi}{3}\right)+\frac{1}{3}\sin\left( 3\left(\omega t-\frac{\pi}{3}\right)\right)+\frac{1}{5}\sin\left(5\left(\omega t-\frac{\pi}{3}\right)\right)+\cdots\right]
  35. \end{align*}
  36. \ifthenelse{\equal{\toPrint}{Lösung}}{%
  37. %\begin{align}
  38. %\intertext{Formeln:}
  39. %\end{align}
  40. Berechnung:\\[\baselineskip]
  41. Elegante Lösung mit Fourier-Reihe:\\
  42. Für die Leistungsaufnahme des Zweipols ist nur der Stromanteil entscheidend, der die gleiche Frequenz wie die Spannung besitzt, d.h. nur
  43. \begin{align*}
  44. P&=U\cdot I_\omega\cdot \cos\varphi\\
  45. i_\omega(t)&=\frac{24\,\ampere}{\pi}\sin(\omega t\underbrace{-\frac{\pi}{3}}_{\varphi})\\
  46. I_\omega&=\frac{24\,\ampere}{\pi\cdot \sqrt{2}}\\
  47. \Rightarrow\quad P&=U\cdot I_\omega\cdot \cos\varphi=\frac{300\,\volt}{\sqrt{2}}\cdot \frac{24\,\ampere}{\pi\sqrt{2}}\cdot \underbrace{\cos\left(-\frac{\pi}{3}\right)}_{0{,5}}=\uuline{573\,\watt}\\
  48. \end{align*}
  49. oder Standardlösung
  50. \begin{align*}
  51. p(t)&=u(t)\cdot i(t)\\
  52. P&=\frac{1}{T}\int_0^Tp(t)\cdot dt=\frac{1}{T}\int_0^Tu(t)\cdot i(t)\cdot dt=\frac{1}{2\pi}\int_0^{2\pi}u(\omega t)\cdot i(\omega t)\cdot d(\omega t)\\
  53. &\text{(Verschiebung Start- und Endwert für Integration)}\\
  54. &=\frac{1}{2\pi}\left[\int_{\frac{\pi}{3}}^{\frac{4}{3}\pi}6\,\ampere\cdot 300\,\volt\cdot \sin(\omega t)d(\omega t)+\int_{\frac{4}{3}\pi}^{\frac{7}{3}\pi}-6\,\ampere\cdot 300\,\volt\cdot \sin(\omega t)d(\omega t)\right]\\
  55. &=\frac{1}{2\pi}\Big[1800\,\volt\ampere\cdot \Big(\underbrace{-\cos\Big(\frac{4}{3}\pi\Big)}_{0{,}5}+\underbrace{\cos\Big(\frac{\pi}{3}\Big)}_{0{,}5}\Big)
  56. -1800\,\volt\ampere\cdot \Big(\underbrace{-\cos\Big(\frac{7}{3}\pi\Big)}_{-0{,}5}+\underbrace{\cos\Big(\frac{4}{3}\pi\Big)}_{-0{,}5}\Big)\Big]\\
  57. &=\frac{1800\,\volt\ampere}{\pi}=\uuline{573\,\watt}\\[\baselineskip]
  58. \end{align*}
  59. oder sinusförmiger Strom unter Berücksichtigung des Formfaktors
  60. \begin{align*}
  61. &\text{Für sinusförmigen Strom:}\\
  62. P_{\sin}&=U\cdot I\cdot \cos\varphi=\frac{300\,\volt}{\sqrt{2}}\cdot \frac{6\,\ampere}{\sqrt{2}}\cdot \cos(60\,\degree)=450\,\watt (\sin) =636\,\watt\\
  63. &\text{Für den rechteckförmigen Strom muß der Formfaktor berücksichtigt werden:}\\
  64. F&=\frac{\pi}{2\sqrt{2}}=1{,}11\\
  65. P&=\frac{P_{\sin}}{F}=\frac{636\,\watt}{1{,}11}=\uuline{573\,\watt}\\
  66. \end{align*}
  67. \clearpage
  68. }{}%