You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ET2_L_B19_A3.tex 8.4KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. \section {Effektivwert und Klirrfaktor}
  2. \begin{minipage}[c]{.7\textwidth}
  3. Bild 1 zeigt einen Teil aus dem Ersatzschaltbild eines Transformators, aus dem hervorgeht,
  4. dass sich der Leerlaufstrom $i_0(t)$ zusammensetzt aus dem (verzerrten) Magnetisierungsstrom
  5. $i_\mu(t)$ und dem Strom $i_{Fe}(t)$, der die Eisenverluste repräsentiert.
  6. \end{minipage}
  7. \begin{minipage}[c]{.3\textwidth}
  8. \begin{align*}
  9. \begin{tikzpicture}[scale=1.5]
  10. \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm,rotate=90]%Spule |
  11. \draw (0,0)--(.3,0) (.7,0)--(1,0)node at(.5,-.0667) [right] {$L_{1h}$};
  12. \fill (.3,-0.0667)rectangle(.7,0.0667);
  13. \draw [<-,red] (.75,.1)--(.95,.1)node at(.85,.1)[left]{\footnotesize$i_{\mu}(t)$};
  14. \end{scope}
  15. \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90]
  16. \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R_{Fe}$};
  17. \draw [<-,red] (.75,-.1)--(.95,-.1)node at(.85,-.1)[right]{\footnotesize$i_{Fe}(t)$};
  18. \end{scope}
  19. \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen.
  20. \draw(0,.1)--(0,0)--(1,0)--(1,.1)(0,.9)--(0,1)--(1,1)--(.9,1)(.5,1)--(.5,1.5)(.5,0)--(.5,-.5);
  21. \fill (0.5,0)circle(0.025cm)(.5,1)circle(0.025cm);
  22. \draw [<-,red] (.6,-.35)--(.6,-.15)node at(.6,-.25)[right]{\footnotesize$i_{0}(t)$};
  23. \end{scope}
  24. \draw node at (.5,-1){Bild 1};
  25. \end{tikzpicture}
  26. \end{align*}
  27. \end{minipage}
  28. Bild 2 zeigt die zeitlichen Verläufe von $i_\mu(t)$ und $i_{Fe}(t)$, welche durch folgende Fourier-Reihen approximiert werden können:\\
  29. $i_\mu(t)=10\,\milli\ampere\cdot \cos(\omega t) + 2,88\,\milli\ampere\cdot \cos(3\omega t)$;\\ $i_{Fe}(t)=-4\,\milli\ampere\cdot \sin(\omega t)$\\[\baselineskip]
  30. Der resultierende, in Bild 3 dargestellte Leerlaufstrom ist die Summe:\\
  31. $i_0(t)= i_\mu(t)+i_{Fe}(t)$
  32. \begin{align*}
  33. % \begin{tikzpicture}[scale=1.5]
  34. % \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm,rotate=90]%Spule |
  35. % \draw (0,0)--(.3,0) (.7,0)--(1,0)node at(.5,-.0667) [right] {$L_{1h}$};
  36. % \fill (.3,-0.0667)rectangle(.7,0.0667);
  37. % \draw [<-,red] (.75,.1)--(.95,.1)node at(.85,.1)[left]{\footnotesize$i_{\mu}(t)$};
  38. % \end{scope}
  39. % \begin{scope}[>=latex,very thick,xshift=1cm,yshift=0cm,rotate=90]
  40. % \draw (0,0)--(.3,0) (.3,-0.0667)rectangle(.7,0.0667) (.7,0)--(1,0)node at (.5,-.0667) [right] {$R_{Fe}$};
  41. % \draw [<-,red] (.75,-.1)--(.95,-.1)node at(.85,-.1)[right]{\footnotesize$i_{Fe}(t)$};
  42. % \end{scope}
  43. % \begin{scope}[>=latex,very thick,xshift=0cm,yshift=0cm]%Fehlstellen Eckverbindungen.
  44. % \draw(0,.1)--(0,0)--(1,0)--(1,.1)(0,.9)--(0,1)--(1,1)--(.9,1)(.5,1)--(.5,1.5)(.5,0)--(.5,-.5);
  45. % \fill (0.5,0)circle(0.025cm)(.5,1)circle(0.025cm);
  46. % \draw [<-,red] (.6,-.35)--(.6,-.15)node at(.6,-.25)[right]{\footnotesize$i_{0}(t)$};
  47. % \end{scope}
  48. %\draw node at (.5,-1){Bild 1};
  49. % \end{tikzpicture}
  50. \begin{tikzpicture}[scale=1.25]
  51. \begin{scope}[>=latex, xshift=0cm, yshift=0]
  52. \foreach \ii in {5} { % Enter Number of Decades in x
  53. \foreach \jj in {2.5} { % Enter Number of Decades in y
  54. \foreach \i in {1,2,...,\ii} {
  55. \foreach \j in {0,1,2,...,\jj} {
  56. \draw[black!50!, step=0.5] (0,-.5) grid (\ii,\jj); % Draw Sub Linear grid
  57. }}% End Log Grid
  58. \draw[black!80!] (0,-.5) grid (\ii,\jj); % Draw Linear grid
  59. \draw [->,thick] (0,-.5)--(0,\jj+.25) node (yaxis) [above] {$i\,[\milli\ampere]$};
  60. \draw [->,thick] (0,1)--(\ii+.25,1) node (xaxis) [right] {$\omega t$}; % Draw axes
  61. \draw node at (0,-.5)[below]{$0$};
  62. \draw node at (2,-.5)[below]{$\pi$};
  63. \draw node at (4,-.5)[below]{$2\pi$};
  64. \foreach \y in {-10,0,10}% y Axis Label:
  65. \node [anchor=east] at(0,\y/10+1){$\y$};
  66. }}
  67. \end{scope}
  68. \begin{scope}[>=latex, xshift=0cm, yshift=1cm]
  69. \draw[color=red,thick,domain=0:5,smooth,samples=100] plot[id=iomega] function{1*cos(.5*3.14*x)+.288*cos(1.5*3.14*x)};
  70. \draw[color=blue,thick,domain=0:5,smooth,samples=100] plot[id=iFe] function{-.4*sin(.5*3.14*x)};
  71. \draw[red] node at (.825,1.25) {{\footnotesize $i_{\mu}(t)$}};
  72. \draw[blue] node at (2.5,.75) {{\footnotesize $i_{Fe}(t)$}};
  73. \end{scope}
  74. \draw node at (2.25,-1)[below]{Bild 2};
  75. \end{tikzpicture}
  76. \begin{tikzpicture}[scale=1.25]
  77. \begin{scope}[>=latex, xshift=0cm, yshift=0]
  78. \foreach \ii in {5} { % Enter Number of Decades in x
  79. \foreach \jj in {2.5} { % Enter Number of Decades in y
  80. \foreach \i in {1,2,...,\ii} {
  81. \foreach \j in {0,1,2,...,\jj} {
  82. \draw[black!50!, step=0.5] (0,-.5) grid (\ii,\jj); % Draw Sub Linear grid
  83. }}% End Log Grid
  84. \draw[black!80!] (0,-.5) grid (\ii,\jj); % Draw Linear grid
  85. \draw [->,thick] (0,-.5)--(0,\jj+.25) node (yaxis) [above] {$i\,[\milli\ampere]$};
  86. \draw [->,thick] (0,1)--(\ii+.25,1) node (xaxis) [right] {$\omega t$}; % Draw axes
  87. \draw node at (0,-.5)[below]{$0$};
  88. \draw node at (2,-.5)[below]{$\pi$};
  89. \draw node at (4,-.5)[below]{$2\pi$};
  90. \foreach \y in {-10,0,10}% y Axis Label:
  91. \node [anchor=east] at(0,\y/10+1){$\y$};
  92. }}
  93. \end{scope}
  94. \begin{scope}[>=latex, xshift=0cm, yshift=1cm]
  95. \draw[color=red!50!blue,thick,domain=0:5,smooth,samples=100] plot[id=iomega] function{1*cos(.5*3.14*x)+.288*cos(1.5*3.14*x)-.4*sin(.5*3.14*x)};
  96. \draw[red!50!blue] node at (.825,1.25) {{\footnotesize $i_0(t)$}};
  97. \end{scope}
  98. \draw node at (2.25,-1)[below]{Bild 3};
  99. \end{tikzpicture}
  100. \end{align*}
  101. \renewcommand{\labelenumi}{\alph{enumi})}
  102. \begin{enumerate}
  103. \item Berechnen Sie Effektivwert und Klirrfaktor von $i_\mu(t)$
  104. \item Berechnen Sie Effektivwert und Klirrfaktor von $i_0(t)$
  105. \end{enumerate}
  106. \ifthenelse{\equal{\toPrint}{Lösung}}{%
  107. \begin{align}
  108. \intertext{Formeln:}
  109. k&=\frac{\sqrt{\sum \limits_{n=2}^{\infty}A^2_n}}{\sqrt{\sum \limits_{n=1}^{\infty}A^2_n}}=\frac{\text{Effektivwert der Oberschwingungen}}{\text{Effektivwert des Gesamtsignals}}
  110. \end{align}
  111. \clearpage
  112. Berechnung:
  113. \begin{align*}
  114. \intertext{a) Effektivwert $I_{\mu}$ und Klirrfaktor $k_{\mu}$}
  115. I_{\mu}&=\sqrt{I_{\mu,\omega}^{\phantom{\mu}2}+I_{\mu,3\omega}^{\phantom{\mu}2}}
  116. =\sqrt{\left(\frac{\widehat{i}_{\mu,\omega}}{\sqrt{2}}\right)^2
  117. +\left(\frac{\widehat{i}_{\mu,3\omega}}{\sqrt{2}}\right)^2}
  118. =\frac{1}{\sqrt{2}}\cdot \sqrt{(10\,\milli\ampere)^2+(2{,}88\,\milli\ampere)^2}=\uuline{7{,}36\,\milli\ampere}\\
  119. %I_{\mu}&=\sqrt{I_{\mu,\omega}^{\phantom{\mu}2}+I_{\mu,3\omega}^{\phantom{\mu}2}}=\frac{1}{\sqrt{2}}\cdot \sqrt{\widehat{i}_{\mu,\omega}^{\phantom{\mu}2}+\widehat{i}_{\mu,3\omega}^{\phantom{\mu}2}}=\frac{1}{\sqrt{2}}\cdot \sqrt{(10\,\milli\ampere)^2+(2{,}88\,\milli\ampere)^2}=\uuline{7{,}36\,\milli\ampere}\\
  120. k_{\mu}&=\frac{I_{\mu,3\omega}}{I_{\mu}}
  121. =\frac{\widehat{i}_{\mu,3\omega}\cancel{/\sqrt{2}}}{\sqrt{\widehat{i}_{\mu,\omega}^{\phantom{\mu}2}
  122. +\widehat{i}_{\mu,3\omega}^{\phantom{\mu}2}}\cancel{/\sqrt{2}}}
  123. =\frac{2{,}88\,\milli\ampere}{\sqrt{(10\,\milli\ampere)^2+(2{,}88\,\milli\ampere)^2}}=\uuline{0{,}277}=\uuline{27{,}7\%}\\
  124. \end{align*}
  125. \begin{minipage}[c]{.8\textwidth}
  126. \begin{align*}
  127. \intertext{b) Effektivwert $I_0$ und Klirrfaktor $k_0$}
  128. \widehat{i}_{0,3\omega}&=\widehat{i}_{\mu,3\omega}=2{,}88\,\milli\ampere\\
  129. \intertext{Nulldurchgang von $\widehat{i}_{Fe}$ bei den Spitzenwerten}\\
  130. \widehat{i}_{0,\omega}&=\sqrt{\widehat{i}_{\mu,\omega}^{\phantom{\mu}2}+\widehat{i}_{Fe,\omega}^{\phantom{Fe}2}}\\
  131. &=\sqrt{(10\,\milli\ampere)^2+(4\,\milli\ampere)^2}=10{,}77\,\milli\ampere\\[\baselineskip]
  132. I_0&=\frac{1}{\sqrt{2}}\cdot \sqrt{\widehat{i}_{0,\omega}^{\phantom{\mu}2}+\widehat{i}_{0,3\omega}^{\phantom{\mu}2}}=\frac{1}{\sqrt{2}}\cdot \sqrt{(10{,}77\,\milli\ampere)^2+(2{,}88\,\milli\ampere)^2}=\uuline{7{,}88\,\milli\ampere}\\
  133. k_0&=\frac{\widehat{i}_{0,3\omega}\cancel{/\sqrt{2}}}{\sqrt{\widehat{i}_{0,\omega}^{\phantom{\mu}2}+\widehat{i}_{0,3\omega}^{\phantom{\mu}2}}\cancel{/\sqrt{2}}}
  134. =\frac{2{,}88\,\milli\ampere}{\sqrt{(10{,}77\,\milli\ampere)^2+(2{,}88\,\milli\ampere)^2}}=\uuline{0{,}258}=\uuline{25{,}8\%}
  135. \end{align*}
  136. \end{minipage}
  137. \begin{minipage}[c]{.2\textwidth}
  138. \begin{tikzpicture}[scale=1.2]
  139. \begin{scope}[>=latex, xshift=2cm, yshift=5]
  140. \draw[dashed](0,-2)rectangle(1,0);
  141. \draw[->,blue](0,0)--(1,0)node[right]{$\widehat{i}_{Fe,\omega}$};
  142. \draw[->,red](0,0)--(0,-2)node[below]{$\widehat{i}_{\mu,\omega}$};
  143. \draw[->,red!50!blue](0,0)--(1,-2)node[below right]{$\widehat{i}_{0,\omega}$};
  144. \end{scope}
  145. \end{tikzpicture}
  146. \end{minipage}\\[\baselineskip]
  147. \uline{Nicht gefragt}\\[\baselineskip]
  148. Typische Klirrfaktoren:\\
  149. Rechteckschwingung $33\%$\\
  150. Sprache noch verständlich $10\%$\\
  151. Max. HiFi Verstärker $1\%$\\
  152. Guter HiFi Verstärker $0{,}1\%$\\
  153. Weiteres unter \url{http://de.wikipedia.org/wiki/Klirrfaktor}
  154. \clearpage
  155. }{}%