2025-12-16 16:06:53 +01:00

79 lines
2.5 KiB
C

#include <string.h>
#include "stack.h"
#include "bintree.h"
//TODO: binären Suchbaum implementieren
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
* `treeSize`: zählt die Knoten im Baum (rekursiv),
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
// Hilfsfunktion: neuen Knoten erstellen und Daten kopieren
TreeNode* newNode(const void* data, size_t dataSize) {
TreeNode* node = malloc(sizeof(TreeNode));
if (!node) return NULL;
node->data = malloc(dataSize);
if (!node->data) {
free(node);
return NULL;
}
memcpy(node->data, data, dataSize); // Daten kopieren
node->left = node->right = NULL;
return node;
}
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize,
CompareFctType compareFct, int *isDuplicate)
{
if (root == NULL) {
*isDuplicate = 0; // kein Duplikat, neuer Knoten
return newNode(data, dataSize); // neuer Knoten wird Wurzel
}
int result = compareFct(data, root->data);
if (result < 0) {
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
} else if (result > 0) {
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
} else {
// result == 0 → Duplikat
*isDuplicate = 1;
}
return root;
}
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
// push the top node and push all its left nodes.
void *nextTreeData(TreeNode *root)
{
}
// Releases all memory resources (including data copies).
void clearTree(TreeNode *root)
{
if (root == NULL) return; // Basisfall: leerer Teilbaum
// Rekursiv zuerst die Kinder freigeben
clearTree(root->left);
clearTree(root->right);
// Daten freigeben
free(root->data);
// Knoten selbst freigeben
free(root);
}
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root)
{
}