forked from freudenreichan/info2Praktikum-NeuronalesNetz
prepareNeuralNetworkFile geschrieben und Tests laufen gelassen
This commit is contained in:
parent
b2408e6f82
commit
3f218ef2de
@ -5,10 +5,47 @@
|
||||
#include "unity.h"
|
||||
#include "neuralNetwork.h"
|
||||
|
||||
#define FILE_HEADER_STRING "__info2_neural_network_file_format__"
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
// TODO
|
||||
FILE *file = fopen(path, "wb");
|
||||
if (file == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Magic String (File Header) schreiben
|
||||
size_t headerLen = strlen(FILE_HEADER_STRING);
|
||||
fwrite(FILE_HEADER_STRING, sizeof(char), headerLen, file);
|
||||
|
||||
// Erste inputDimension schreiben (vom ersten Layer)
|
||||
if (nn.numberOfLayers > 0) {
|
||||
unsigned int inputDim = nn.layers[0].weights.cols;
|
||||
fwrite(&inputDim, sizeof(unsigned int), 1, file);
|
||||
}
|
||||
|
||||
// Für jeden Layer: outputDimension, weights und biases schreiben
|
||||
for (unsigned int i = 0; i < nn.numberOfLayers; i++) {
|
||||
Layer layer = nn.layers[i];
|
||||
|
||||
// Output-Dimension dieses Layers schreiben
|
||||
unsigned int outputDim = layer.weights.rows;
|
||||
fwrite(&outputDim, sizeof(unsigned int), 1, file);
|
||||
|
||||
// Weights schreiben (alle Daten)
|
||||
unsigned int weightSize = layer.weights.rows * layer.weights.cols;
|
||||
fwrite(layer.weights.buffer, sizeof(MatrixType), weightSize, file);
|
||||
|
||||
// Biases schreiben (alle Daten)
|
||||
unsigned int biasSize = layer.biases.rows * layer.biases.cols;
|
||||
fwrite(layer.biases.buffer, sizeof(MatrixType), biasSize, file);
|
||||
}
|
||||
|
||||
// Endmarkierung schreiben (0 als nächste outputDimension)
|
||||
unsigned int endMarker = 0;
|
||||
fwrite(&endMarker, sizeof(unsigned int), 1, file);
|
||||
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user