|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357 |
- (function(){
-
- // Copyright (c) 2005 Tom Wu
- // All Rights Reserved.
- // See "LICENSE" for details.
-
- // Basic JavaScript BN library - subset useful for RSA encryption.
-
- // Bits per digit
- var dbits;
-
- // JavaScript engine analysis
- var canary = 0xdeadbeefcafe;
- var j_lm = ((canary&0xffffff)==0xefcafe);
-
- // (public) Constructor
- function BigInteger(a,b,c) {
- if(a != null)
- if("number" == typeof a) this.fromNumber(a,b,c);
- else if(b == null && "string" != typeof a) this.fromString(a,256);
- else this.fromString(a,b);
- }
-
- // return new, unset BigInteger
- function nbi() { return new BigInteger(null); }
-
- // am: Compute w_j += (x*this_i), propagate carries,
- // c is initial carry, returns final carry.
- // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
- // We need to select the fastest one that works in this environment.
-
- // am1: use a single mult and divide to get the high bits,
- // max digit bits should be 26 because
- // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
- function am1(i,x,w,j,c,n) {
- while(--n >= 0) {
- var v = x*this[i++]+w[j]+c;
- c = Math.floor(v/0x4000000);
- w[j++] = v&0x3ffffff;
- }
- return c;
- }
- // am2 avoids a big mult-and-extract completely.
- // Max digit bits should be <= 30 because we do bitwise ops
- // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
- function am2(i,x,w,j,c,n) {
- var xl = x&0x7fff, xh = x>>15;
- while(--n >= 0) {
- var l = this[i]&0x7fff;
- var h = this[i++]>>15;
- var m = xh*l+h*xl;
- l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
- c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
- w[j++] = l&0x3fffffff;
- }
- return c;
- }
- // Alternately, set max digit bits to 28 since some
- // browsers slow down when dealing with 32-bit numbers.
- function am3(i,x,w,j,c,n) {
- var xl = x&0x3fff, xh = x>>14;
- while(--n >= 0) {
- var l = this[i]&0x3fff;
- var h = this[i++]>>14;
- var m = xh*l+h*xl;
- l = xl*l+((m&0x3fff)<<14)+w[j]+c;
- c = (l>>28)+(m>>14)+xh*h;
- w[j++] = l&0xfffffff;
- }
- return c;
- }
- var inBrowser = typeof navigator !== "undefined";
- if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
- BigInteger.prototype.am = am2;
- dbits = 30;
- }
- else if(inBrowser && j_lm && (navigator.appName != "Netscape")) {
- BigInteger.prototype.am = am1;
- dbits = 26;
- }
- else { // Mozilla/Netscape seems to prefer am3
- BigInteger.prototype.am = am3;
- dbits = 28;
- }
-
- BigInteger.prototype.DB = dbits;
- BigInteger.prototype.DM = ((1<<dbits)-1);
- BigInteger.prototype.DV = (1<<dbits);
-
- var BI_FP = 52;
- BigInteger.prototype.FV = Math.pow(2,BI_FP);
- BigInteger.prototype.F1 = BI_FP-dbits;
- BigInteger.prototype.F2 = 2*dbits-BI_FP;
-
- // Digit conversions
- var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
- var BI_RC = new Array();
- var rr,vv;
- rr = "0".charCodeAt(0);
- for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
- rr = "a".charCodeAt(0);
- for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
- rr = "A".charCodeAt(0);
- for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
-
- function int2char(n) { return BI_RM.charAt(n); }
- function intAt(s,i) {
- var c = BI_RC[s.charCodeAt(i)];
- return (c==null)?-1:c;
- }
-
- // (protected) copy this to r
- function bnpCopyTo(r) {
- for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
- r.t = this.t;
- r.s = this.s;
- }
-
- // (protected) set from integer value x, -DV <= x < DV
- function bnpFromInt(x) {
- this.t = 1;
- this.s = (x<0)?-1:0;
- if(x > 0) this[0] = x;
- else if(x < -1) this[0] = x+this.DV;
- else this.t = 0;
- }
-
- // return bigint initialized to value
- function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
-
- // (protected) set from string and radix
- function bnpFromString(s,b) {
- var k;
- if(b == 16) k = 4;
- else if(b == 8) k = 3;
- else if(b == 256) k = 8; // byte array
- else if(b == 2) k = 1;
- else if(b == 32) k = 5;
- else if(b == 4) k = 2;
- else { this.fromRadix(s,b); return; }
- this.t = 0;
- this.s = 0;
- var i = s.length, mi = false, sh = 0;
- while(--i >= 0) {
- var x = (k==8)?s[i]&0xff:intAt(s,i);
- if(x < 0) {
- if(s.charAt(i) == "-") mi = true;
- continue;
- }
- mi = false;
- if(sh == 0)
- this[this.t++] = x;
- else if(sh+k > this.DB) {
- this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
- this[this.t++] = (x>>(this.DB-sh));
- }
- else
- this[this.t-1] |= x<<sh;
- sh += k;
- if(sh >= this.DB) sh -= this.DB;
- }
- if(k == 8 && (s[0]&0x80) != 0) {
- this.s = -1;
- if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
- }
- this.clamp();
- if(mi) BigInteger.ZERO.subTo(this,this);
- }
-
- // (protected) clamp off excess high words
- function bnpClamp() {
- var c = this.s&this.DM;
- while(this.t > 0 && this[this.t-1] == c) --this.t;
- }
-
- // (public) return string representation in given radix
- function bnToString(b) {
- if(this.s < 0) return "-"+this.negate().toString(b);
- var k;
- if(b == 16) k = 4;
- else if(b == 8) k = 3;
- else if(b == 2) k = 1;
- else if(b == 32) k = 5;
- else if(b == 4) k = 2;
- else return this.toRadix(b);
- var km = (1<<k)-1, d, m = false, r = "", i = this.t;
- var p = this.DB-(i*this.DB)%k;
- if(i-- > 0) {
- if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
- while(i >= 0) {
- if(p < k) {
- d = (this[i]&((1<<p)-1))<<(k-p);
- d |= this[--i]>>(p+=this.DB-k);
- }
- else {
- d = (this[i]>>(p-=k))&km;
- if(p <= 0) { p += this.DB; --i; }
- }
- if(d > 0) m = true;
- if(m) r += int2char(d);
- }
- }
- return m?r:"0";
- }
-
- // (public) -this
- function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
-
- // (public) |this|
- function bnAbs() { return (this.s<0)?this.negate():this; }
-
- // (public) return + if this > a, - if this < a, 0 if equal
- function bnCompareTo(a) {
- var r = this.s-a.s;
- if(r != 0) return r;
- var i = this.t;
- r = i-a.t;
- if(r != 0) return (this.s<0)?-r:r;
- while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
- return 0;
- }
-
- // returns bit length of the integer x
- function nbits(x) {
- var r = 1, t;
- if((t=x>>>16) != 0) { x = t; r += 16; }
- if((t=x>>8) != 0) { x = t; r += 8; }
- if((t=x>>4) != 0) { x = t; r += 4; }
- if((t=x>>2) != 0) { x = t; r += 2; }
- if((t=x>>1) != 0) { x = t; r += 1; }
- return r;
- }
-
- // (public) return the number of bits in "this"
- function bnBitLength() {
- if(this.t <= 0) return 0;
- return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
- }
-
- // (protected) r = this << n*DB
- function bnpDLShiftTo(n,r) {
- var i;
- for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
- for(i = n-1; i >= 0; --i) r[i] = 0;
- r.t = this.t+n;
- r.s = this.s;
- }
-
- // (protected) r = this >> n*DB
- function bnpDRShiftTo(n,r) {
- for(var i = n; i < this.t; ++i) r[i-n] = this[i];
- r.t = Math.max(this.t-n,0);
- r.s = this.s;
- }
-
- // (protected) r = this << n
- function bnpLShiftTo(n,r) {
- var bs = n%this.DB;
- var cbs = this.DB-bs;
- var bm = (1<<cbs)-1;
- var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
- for(i = this.t-1; i >= 0; --i) {
- r[i+ds+1] = (this[i]>>cbs)|c;
- c = (this[i]&bm)<<bs;
- }
- for(i = ds-1; i >= 0; --i) r[i] = 0;
- r[ds] = c;
- r.t = this.t+ds+1;
- r.s = this.s;
- r.clamp();
- }
-
- // (protected) r = this >> n
- function bnpRShiftTo(n,r) {
- r.s = this.s;
- var ds = Math.floor(n/this.DB);
- if(ds >= this.t) { r.t = 0; return; }
- var bs = n%this.DB;
- var cbs = this.DB-bs;
- var bm = (1<<bs)-1;
- r[0] = this[ds]>>bs;
- for(var i = ds+1; i < this.t; ++i) {
- r[i-ds-1] |= (this[i]&bm)<<cbs;
- r[i-ds] = this[i]>>bs;
- }
- if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
- r.t = this.t-ds;
- r.clamp();
- }
-
- // (protected) r = this - a
- function bnpSubTo(a,r) {
- var i = 0, c = 0, m = Math.min(a.t,this.t);
- while(i < m) {
- c += this[i]-a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- if(a.t < this.t) {
- c -= a.s;
- while(i < this.t) {
- c += this[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while(i < a.t) {
- c -= a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c -= a.s;
- }
- r.s = (c<0)?-1:0;
- if(c < -1) r[i++] = this.DV+c;
- else if(c > 0) r[i++] = c;
- r.t = i;
- r.clamp();
- }
-
- // (protected) r = this * a, r != this,a (HAC 14.12)
- // "this" should be the larger one if appropriate.
- function bnpMultiplyTo(a,r) {
- var x = this.abs(), y = a.abs();
- var i = x.t;
- r.t = i+y.t;
- while(--i >= 0) r[i] = 0;
- for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
- r.s = 0;
- r.clamp();
- if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
- }
-
- // (protected) r = this^2, r != this (HAC 14.16)
- function bnpSquareTo(r) {
- var x = this.abs();
- var i = r.t = 2*x.t;
- while(--i >= 0) r[i] = 0;
- for(i = 0; i < x.t-1; ++i) {
- var c = x.am(i,x[i],r,2*i,0,1);
- if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
- r[i+x.t] -= x.DV;
- r[i+x.t+1] = 1;
- }
- }
- if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
- r.s = 0;
- r.clamp();
- }
-
- // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
- // r != q, this != m. q or r may be null.
- function bnpDivRemTo(m,q,r) {
- var pm = m.abs();
- if(pm.t <= 0) return;
- var pt = this.abs();
- if(pt.t < pm.t) {
- if(q != null) q.fromInt(0);
- if(r != null) this.copyTo(r);
- return;
- }
- if(r == null) r = nbi();
- var y = nbi(), ts = this.s, ms = m.s;
- var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
- if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
- else { pm.copyTo(y); pt.copyTo(r); }
- var ys = y.t;
- var y0 = y[ys-1];
- if(y0 == 0) return;
- var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
- var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
- var i = r.t, j = i-ys, t = (q==null)?nbi():q;
- y.dlShiftTo(j,t);
- if(r.compareTo(t) >= 0) {
- r[r.t++] = 1;
- r.subTo(t,r);
- }
- BigInteger.ONE.dlShiftTo(ys,t);
- t.subTo(y,y); // "negative" y so we can replace sub with am later
- while(y.t < ys) y[y.t++] = 0;
- while(--j >= 0) {
- // Estimate quotient digit
- var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
- if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
- y.dlShiftTo(j,t);
- r.subTo(t,r);
- while(r[i] < --qd) r.subTo(t,r);
- }
- }
- if(q != null) {
- r.drShiftTo(ys,q);
- if(ts != ms) BigInteger.ZERO.subTo(q,q);
- }
- r.t = ys;
- r.clamp();
- if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
- if(ts < 0) BigInteger.ZERO.subTo(r,r);
- }
-
- // (public) this mod a
- function bnMod(a) {
- var r = nbi();
- this.abs().divRemTo(a,null,r);
- if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
- return r;
- }
-
- // Modular reduction using "classic" algorithm
- function Classic(m) { this.m = m; }
- function cConvert(x) {
- if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
- else return x;
- }
- function cRevert(x) { return x; }
- function cReduce(x) { x.divRemTo(this.m,null,x); }
- function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
- function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
-
- Classic.prototype.convert = cConvert;
- Classic.prototype.revert = cRevert;
- Classic.prototype.reduce = cReduce;
- Classic.prototype.mulTo = cMulTo;
- Classic.prototype.sqrTo = cSqrTo;
-
- // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
- // justification:
- // xy == 1 (mod m)
- // xy = 1+km
- // xy(2-xy) = (1+km)(1-km)
- // x[y(2-xy)] = 1-k^2m^2
- // x[y(2-xy)] == 1 (mod m^2)
- // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
- // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
- // JS multiply "overflows" differently from C/C++, so care is needed here.
- function bnpInvDigit() {
- if(this.t < 1) return 0;
- var x = this[0];
- if((x&1) == 0) return 0;
- var y = x&3; // y == 1/x mod 2^2
- y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
- y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
- y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
- // last step - calculate inverse mod DV directly;
- // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
- y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
- // we really want the negative inverse, and -DV < y < DV
- return (y>0)?this.DV-y:-y;
- }
-
- // Montgomery reduction
- function Montgomery(m) {
- this.m = m;
- this.mp = m.invDigit();
- this.mpl = this.mp&0x7fff;
- this.mph = this.mp>>15;
- this.um = (1<<(m.DB-15))-1;
- this.mt2 = 2*m.t;
- }
-
- // xR mod m
- function montConvert(x) {
- var r = nbi();
- x.abs().dlShiftTo(this.m.t,r);
- r.divRemTo(this.m,null,r);
- if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
- return r;
- }
-
- // x/R mod m
- function montRevert(x) {
- var r = nbi();
- x.copyTo(r);
- this.reduce(r);
- return r;
- }
-
- // x = x/R mod m (HAC 14.32)
- function montReduce(x) {
- while(x.t <= this.mt2) // pad x so am has enough room later
- x[x.t++] = 0;
- for(var i = 0; i < this.m.t; ++i) {
- // faster way of calculating u0 = x[i]*mp mod DV
- var j = x[i]&0x7fff;
- var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
- // use am to combine the multiply-shift-add into one call
- j = i+this.m.t;
- x[j] += this.m.am(0,u0,x,i,0,this.m.t);
- // propagate carry
- while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
- }
- x.clamp();
- x.drShiftTo(this.m.t,x);
- if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
- }
-
- // r = "x^2/R mod m"; x != r
- function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
-
- // r = "xy/R mod m"; x,y != r
- function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
-
- Montgomery.prototype.convert = montConvert;
- Montgomery.prototype.revert = montRevert;
- Montgomery.prototype.reduce = montReduce;
- Montgomery.prototype.mulTo = montMulTo;
- Montgomery.prototype.sqrTo = montSqrTo;
-
- // (protected) true iff this is even
- function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
-
- // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
- function bnpExp(e,z) {
- if(e > 0xffffffff || e < 1) return BigInteger.ONE;
- var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
- g.copyTo(r);
- while(--i >= 0) {
- z.sqrTo(r,r2);
- if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
- else { var t = r; r = r2; r2 = t; }
- }
- return z.revert(r);
- }
-
- // (public) this^e % m, 0 <= e < 2^32
- function bnModPowInt(e,m) {
- var z;
- if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
- return this.exp(e,z);
- }
-
- // protected
- BigInteger.prototype.copyTo = bnpCopyTo;
- BigInteger.prototype.fromInt = bnpFromInt;
- BigInteger.prototype.fromString = bnpFromString;
- BigInteger.prototype.clamp = bnpClamp;
- BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
- BigInteger.prototype.drShiftTo = bnpDRShiftTo;
- BigInteger.prototype.lShiftTo = bnpLShiftTo;
- BigInteger.prototype.rShiftTo = bnpRShiftTo;
- BigInteger.prototype.subTo = bnpSubTo;
- BigInteger.prototype.multiplyTo = bnpMultiplyTo;
- BigInteger.prototype.squareTo = bnpSquareTo;
- BigInteger.prototype.divRemTo = bnpDivRemTo;
- BigInteger.prototype.invDigit = bnpInvDigit;
- BigInteger.prototype.isEven = bnpIsEven;
- BigInteger.prototype.exp = bnpExp;
-
- // public
- BigInteger.prototype.toString = bnToString;
- BigInteger.prototype.negate = bnNegate;
- BigInteger.prototype.abs = bnAbs;
- BigInteger.prototype.compareTo = bnCompareTo;
- BigInteger.prototype.bitLength = bnBitLength;
- BigInteger.prototype.mod = bnMod;
- BigInteger.prototype.modPowInt = bnModPowInt;
-
- // "constants"
- BigInteger.ZERO = nbv(0);
- BigInteger.ONE = nbv(1);
-
- // Copyright (c) 2005-2009 Tom Wu
- // All Rights Reserved.
- // See "LICENSE" for details.
-
- // Extended JavaScript BN functions, required for RSA private ops.
-
- // Version 1.1: new BigInteger("0", 10) returns "proper" zero
- // Version 1.2: square() API, isProbablePrime fix
-
- // (public)
- function bnClone() { var r = nbi(); this.copyTo(r); return r; }
-
- // (public) return value as integer
- function bnIntValue() {
- if(this.s < 0) {
- if(this.t == 1) return this[0]-this.DV;
- else if(this.t == 0) return -1;
- }
- else if(this.t == 1) return this[0];
- else if(this.t == 0) return 0;
- // assumes 16 < DB < 32
- return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
- }
-
- // (public) return value as byte
- function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
-
- // (public) return value as short (assumes DB>=16)
- function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
-
- // (protected) return x s.t. r^x < DV
- function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
-
- // (public) 0 if this == 0, 1 if this > 0
- function bnSigNum() {
- if(this.s < 0) return -1;
- else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
- else return 1;
- }
-
- // (protected) convert to radix string
- function bnpToRadix(b) {
- if(b == null) b = 10;
- if(this.signum() == 0 || b < 2 || b > 36) return "0";
- var cs = this.chunkSize(b);
- var a = Math.pow(b,cs);
- var d = nbv(a), y = nbi(), z = nbi(), r = "";
- this.divRemTo(d,y,z);
- while(y.signum() > 0) {
- r = (a+z.intValue()).toString(b).substr(1) + r;
- y.divRemTo(d,y,z);
- }
- return z.intValue().toString(b) + r;
- }
-
- // (protected) convert from radix string
- function bnpFromRadix(s,b) {
- this.fromInt(0);
- if(b == null) b = 10;
- var cs = this.chunkSize(b);
- var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
- for(var i = 0; i < s.length; ++i) {
- var x = intAt(s,i);
- if(x < 0) {
- if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
- continue;
- }
- w = b*w+x;
- if(++j >= cs) {
- this.dMultiply(d);
- this.dAddOffset(w,0);
- j = 0;
- w = 0;
- }
- }
- if(j > 0) {
- this.dMultiply(Math.pow(b,j));
- this.dAddOffset(w,0);
- }
- if(mi) BigInteger.ZERO.subTo(this,this);
- }
-
- // (protected) alternate constructor
- function bnpFromNumber(a,b,c) {
- if("number" == typeof b) {
- // new BigInteger(int,int,RNG)
- if(a < 2) this.fromInt(1);
- else {
- this.fromNumber(a,c);
- if(!this.testBit(a-1)) // force MSB set
- this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
- if(this.isEven()) this.dAddOffset(1,0); // force odd
- while(!this.isProbablePrime(b)) {
- this.dAddOffset(2,0);
- if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
- }
- }
- }
- else {
- // new BigInteger(int,RNG)
- var x = new Array(), t = a&7;
- x.length = (a>>3)+1;
- b.nextBytes(x);
- if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
- this.fromString(x,256);
- }
- }
-
- // (public) convert to bigendian byte array
- function bnToByteArray() {
- var i = this.t, r = new Array();
- r[0] = this.s;
- var p = this.DB-(i*this.DB)%8, d, k = 0;
- if(i-- > 0) {
- if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
- r[k++] = d|(this.s<<(this.DB-p));
- while(i >= 0) {
- if(p < 8) {
- d = (this[i]&((1<<p)-1))<<(8-p);
- d |= this[--i]>>(p+=this.DB-8);
- }
- else {
- d = (this[i]>>(p-=8))&0xff;
- if(p <= 0) { p += this.DB; --i; }
- }
- if((d&0x80) != 0) d |= -256;
- if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
- if(k > 0 || d != this.s) r[k++] = d;
- }
- }
- return r;
- }
-
- function bnEquals(a) { return(this.compareTo(a)==0); }
- function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
- function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
-
- // (protected) r = this op a (bitwise)
- function bnpBitwiseTo(a,op,r) {
- var i, f, m = Math.min(a.t,this.t);
- for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
- if(a.t < this.t) {
- f = a.s&this.DM;
- for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
- r.t = this.t;
- }
- else {
- f = this.s&this.DM;
- for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
- r.t = a.t;
- }
- r.s = op(this.s,a.s);
- r.clamp();
- }
-
- // (public) this & a
- function op_and(x,y) { return x&y; }
- function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
-
- // (public) this | a
- function op_or(x,y) { return x|y; }
- function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
-
- // (public) this ^ a
- function op_xor(x,y) { return x^y; }
- function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
-
- // (public) this & ~a
- function op_andnot(x,y) { return x&~y; }
- function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
-
- // (public) ~this
- function bnNot() {
- var r = nbi();
- for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
- r.t = this.t;
- r.s = ~this.s;
- return r;
- }
-
- // (public) this << n
- function bnShiftLeft(n) {
- var r = nbi();
- if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
- return r;
- }
-
- // (public) this >> n
- function bnShiftRight(n) {
- var r = nbi();
- if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
- return r;
- }
-
- // return index of lowest 1-bit in x, x < 2^31
- function lbit(x) {
- if(x == 0) return -1;
- var r = 0;
- if((x&0xffff) == 0) { x >>= 16; r += 16; }
- if((x&0xff) == 0) { x >>= 8; r += 8; }
- if((x&0xf) == 0) { x >>= 4; r += 4; }
- if((x&3) == 0) { x >>= 2; r += 2; }
- if((x&1) == 0) ++r;
- return r;
- }
-
- // (public) returns index of lowest 1-bit (or -1 if none)
- function bnGetLowestSetBit() {
- for(var i = 0; i < this.t; ++i)
- if(this[i] != 0) return i*this.DB+lbit(this[i]);
- if(this.s < 0) return this.t*this.DB;
- return -1;
- }
-
- // return number of 1 bits in x
- function cbit(x) {
- var r = 0;
- while(x != 0) { x &= x-1; ++r; }
- return r;
- }
-
- // (public) return number of set bits
- function bnBitCount() {
- var r = 0, x = this.s&this.DM;
- for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
- return r;
- }
-
- // (public) true iff nth bit is set
- function bnTestBit(n) {
- var j = Math.floor(n/this.DB);
- if(j >= this.t) return(this.s!=0);
- return((this[j]&(1<<(n%this.DB)))!=0);
- }
-
- // (protected) this op (1<<n)
- function bnpChangeBit(n,op) {
- var r = BigInteger.ONE.shiftLeft(n);
- this.bitwiseTo(r,op,r);
- return r;
- }
-
- // (public) this | (1<<n)
- function bnSetBit(n) { return this.changeBit(n,op_or); }
-
- // (public) this & ~(1<<n)
- function bnClearBit(n) { return this.changeBit(n,op_andnot); }
-
- // (public) this ^ (1<<n)
- function bnFlipBit(n) { return this.changeBit(n,op_xor); }
-
- // (protected) r = this + a
- function bnpAddTo(a,r) {
- var i = 0, c = 0, m = Math.min(a.t,this.t);
- while(i < m) {
- c += this[i]+a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- if(a.t < this.t) {
- c += a.s;
- while(i < this.t) {
- c += this[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while(i < a.t) {
- c += a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c += a.s;
- }
- r.s = (c<0)?-1:0;
- if(c > 0) r[i++] = c;
- else if(c < -1) r[i++] = this.DV+c;
- r.t = i;
- r.clamp();
- }
-
- // (public) this + a
- function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
-
- // (public) this - a
- function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
-
- // (public) this * a
- function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
-
- // (public) this^2
- function bnSquare() { var r = nbi(); this.squareTo(r); return r; }
-
- // (public) this / a
- function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
-
- // (public) this % a
- function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
-
- // (public) [this/a,this%a]
- function bnDivideAndRemainder(a) {
- var q = nbi(), r = nbi();
- this.divRemTo(a,q,r);
- return new Array(q,r);
- }
-
- // (protected) this *= n, this >= 0, 1 < n < DV
- function bnpDMultiply(n) {
- this[this.t] = this.am(0,n-1,this,0,0,this.t);
- ++this.t;
- this.clamp();
- }
-
- // (protected) this += n << w words, this >= 0
- function bnpDAddOffset(n,w) {
- if(n == 0) return;
- while(this.t <= w) this[this.t++] = 0;
- this[w] += n;
- while(this[w] >= this.DV) {
- this[w] -= this.DV;
- if(++w >= this.t) this[this.t++] = 0;
- ++this[w];
- }
- }
-
- // A "null" reducer
- function NullExp() {}
- function nNop(x) { return x; }
- function nMulTo(x,y,r) { x.multiplyTo(y,r); }
- function nSqrTo(x,r) { x.squareTo(r); }
-
- NullExp.prototype.convert = nNop;
- NullExp.prototype.revert = nNop;
- NullExp.prototype.mulTo = nMulTo;
- NullExp.prototype.sqrTo = nSqrTo;
-
- // (public) this^e
- function bnPow(e) { return this.exp(e,new NullExp()); }
-
- // (protected) r = lower n words of "this * a", a.t <= n
- // "this" should be the larger one if appropriate.
- function bnpMultiplyLowerTo(a,n,r) {
- var i = Math.min(this.t+a.t,n);
- r.s = 0; // assumes a,this >= 0
- r.t = i;
- while(i > 0) r[--i] = 0;
- var j;
- for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
- for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
- r.clamp();
- }
-
- // (protected) r = "this * a" without lower n words, n > 0
- // "this" should be the larger one if appropriate.
- function bnpMultiplyUpperTo(a,n,r) {
- --n;
- var i = r.t = this.t+a.t-n;
- r.s = 0; // assumes a,this >= 0
- while(--i >= 0) r[i] = 0;
- for(i = Math.max(n-this.t,0); i < a.t; ++i)
- r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
- r.clamp();
- r.drShiftTo(1,r);
- }
-
- // Barrett modular reduction
- function Barrett(m) {
- // setup Barrett
- this.r2 = nbi();
- this.q3 = nbi();
- BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
- this.mu = this.r2.divide(m);
- this.m = m;
- }
-
- function barrettConvert(x) {
- if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
- else if(x.compareTo(this.m) < 0) return x;
- else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
- }
-
- function barrettRevert(x) { return x; }
-
- // x = x mod m (HAC 14.42)
- function barrettReduce(x) {
- x.drShiftTo(this.m.t-1,this.r2);
- if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
- this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
- this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
- while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
- x.subTo(this.r2,x);
- while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
- }
-
- // r = x^2 mod m; x != r
- function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
-
- // r = x*y mod m; x,y != r
- function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
-
- Barrett.prototype.convert = barrettConvert;
- Barrett.prototype.revert = barrettRevert;
- Barrett.prototype.reduce = barrettReduce;
- Barrett.prototype.mulTo = barrettMulTo;
- Barrett.prototype.sqrTo = barrettSqrTo;
-
- // (public) this^e % m (HAC 14.85)
- function bnModPow(e,m) {
- var i = e.bitLength(), k, r = nbv(1), z;
- if(i <= 0) return r;
- else if(i < 18) k = 1;
- else if(i < 48) k = 3;
- else if(i < 144) k = 4;
- else if(i < 768) k = 5;
- else k = 6;
- if(i < 8)
- z = new Classic(m);
- else if(m.isEven())
- z = new Barrett(m);
- else
- z = new Montgomery(m);
-
- // precomputation
- var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
- g[1] = z.convert(this);
- if(k > 1) {
- var g2 = nbi();
- z.sqrTo(g[1],g2);
- while(n <= km) {
- g[n] = nbi();
- z.mulTo(g2,g[n-2],g[n]);
- n += 2;
- }
- }
-
- var j = e.t-1, w, is1 = true, r2 = nbi(), t;
- i = nbits(e[j])-1;
- while(j >= 0) {
- if(i >= k1) w = (e[j]>>(i-k1))&km;
- else {
- w = (e[j]&((1<<(i+1))-1))<<(k1-i);
- if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
- }
-
- n = k;
- while((w&1) == 0) { w >>= 1; --n; }
- if((i -= n) < 0) { i += this.DB; --j; }
- if(is1) { // ret == 1, don't bother squaring or multiplying it
- g[w].copyTo(r);
- is1 = false;
- }
- else {
- while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
- if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
- z.mulTo(r2,g[w],r);
- }
-
- while(j >= 0 && (e[j]&(1<<i)) == 0) {
- z.sqrTo(r,r2); t = r; r = r2; r2 = t;
- if(--i < 0) { i = this.DB-1; --j; }
- }
- }
- return z.revert(r);
- }
-
- // (public) gcd(this,a) (HAC 14.54)
- function bnGCD(a) {
- var x = (this.s<0)?this.negate():this.clone();
- var y = (a.s<0)?a.negate():a.clone();
- if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
- var i = x.getLowestSetBit(), g = y.getLowestSetBit();
- if(g < 0) return x;
- if(i < g) g = i;
- if(g > 0) {
- x.rShiftTo(g,x);
- y.rShiftTo(g,y);
- }
- while(x.signum() > 0) {
- if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
- if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
- if(x.compareTo(y) >= 0) {
- x.subTo(y,x);
- x.rShiftTo(1,x);
- }
- else {
- y.subTo(x,y);
- y.rShiftTo(1,y);
- }
- }
- if(g > 0) y.lShiftTo(g,y);
- return y;
- }
-
- // (protected) this % n, n < 2^26
- function bnpModInt(n) {
- if(n <= 0) return 0;
- var d = this.DV%n, r = (this.s<0)?n-1:0;
- if(this.t > 0)
- if(d == 0) r = this[0]%n;
- else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
- return r;
- }
-
- // (public) 1/this % m (HAC 14.61)
- function bnModInverse(m) {
- var ac = m.isEven();
- if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
- var u = m.clone(), v = this.clone();
- var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
- while(u.signum() != 0) {
- while(u.isEven()) {
- u.rShiftTo(1,u);
- if(ac) {
- if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
- a.rShiftTo(1,a);
- }
- else if(!b.isEven()) b.subTo(m,b);
- b.rShiftTo(1,b);
- }
- while(v.isEven()) {
- v.rShiftTo(1,v);
- if(ac) {
- if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
- c.rShiftTo(1,c);
- }
- else if(!d.isEven()) d.subTo(m,d);
- d.rShiftTo(1,d);
- }
- if(u.compareTo(v) >= 0) {
- u.subTo(v,u);
- if(ac) a.subTo(c,a);
- b.subTo(d,b);
- }
- else {
- v.subTo(u,v);
- if(ac) c.subTo(a,c);
- d.subTo(b,d);
- }
- }
- if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
- if(d.compareTo(m) >= 0) return d.subtract(m);
- if(d.signum() < 0) d.addTo(m,d); else return d;
- if(d.signum() < 0) return d.add(m); else return d;
- }
-
- var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
- var lplim = (1<<26)/lowprimes[lowprimes.length-1];
-
- // (public) test primality with certainty >= 1-.5^t
- function bnIsProbablePrime(t) {
- var i, x = this.abs();
- if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
- for(i = 0; i < lowprimes.length; ++i)
- if(x[0] == lowprimes[i]) return true;
- return false;
- }
- if(x.isEven()) return false;
- i = 1;
- while(i < lowprimes.length) {
- var m = lowprimes[i], j = i+1;
- while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
- m = x.modInt(m);
- while(i < j) if(m%lowprimes[i++] == 0) return false;
- }
- return x.millerRabin(t);
- }
-
- // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
- function bnpMillerRabin(t) {
- var n1 = this.subtract(BigInteger.ONE);
- var k = n1.getLowestSetBit();
- if(k <= 0) return false;
- var r = n1.shiftRight(k);
- t = (t+1)>>1;
- if(t > lowprimes.length) t = lowprimes.length;
- var a = nbi();
- for(var i = 0; i < t; ++i) {
- //Pick bases at random, instead of starting at 2
- a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);
- var y = a.modPow(r,this);
- if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
- var j = 1;
- while(j++ < k && y.compareTo(n1) != 0) {
- y = y.modPowInt(2,this);
- if(y.compareTo(BigInteger.ONE) == 0) return false;
- }
- if(y.compareTo(n1) != 0) return false;
- }
- }
- return true;
- }
-
- // protected
- BigInteger.prototype.chunkSize = bnpChunkSize;
- BigInteger.prototype.toRadix = bnpToRadix;
- BigInteger.prototype.fromRadix = bnpFromRadix;
- BigInteger.prototype.fromNumber = bnpFromNumber;
- BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
- BigInteger.prototype.changeBit = bnpChangeBit;
- BigInteger.prototype.addTo = bnpAddTo;
- BigInteger.prototype.dMultiply = bnpDMultiply;
- BigInteger.prototype.dAddOffset = bnpDAddOffset;
- BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
- BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
- BigInteger.prototype.modInt = bnpModInt;
- BigInteger.prototype.millerRabin = bnpMillerRabin;
-
- // public
- BigInteger.prototype.clone = bnClone;
- BigInteger.prototype.intValue = bnIntValue;
- BigInteger.prototype.byteValue = bnByteValue;
- BigInteger.prototype.shortValue = bnShortValue;
- BigInteger.prototype.signum = bnSigNum;
- BigInteger.prototype.toByteArray = bnToByteArray;
- BigInteger.prototype.equals = bnEquals;
- BigInteger.prototype.min = bnMin;
- BigInteger.prototype.max = bnMax;
- BigInteger.prototype.and = bnAnd;
- BigInteger.prototype.or = bnOr;
- BigInteger.prototype.xor = bnXor;
- BigInteger.prototype.andNot = bnAndNot;
- BigInteger.prototype.not = bnNot;
- BigInteger.prototype.shiftLeft = bnShiftLeft;
- BigInteger.prototype.shiftRight = bnShiftRight;
- BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
- BigInteger.prototype.bitCount = bnBitCount;
- BigInteger.prototype.testBit = bnTestBit;
- BigInteger.prototype.setBit = bnSetBit;
- BigInteger.prototype.clearBit = bnClearBit;
- BigInteger.prototype.flipBit = bnFlipBit;
- BigInteger.prototype.add = bnAdd;
- BigInteger.prototype.subtract = bnSubtract;
- BigInteger.prototype.multiply = bnMultiply;
- BigInteger.prototype.divide = bnDivide;
- BigInteger.prototype.remainder = bnRemainder;
- BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
- BigInteger.prototype.modPow = bnModPow;
- BigInteger.prototype.modInverse = bnModInverse;
- BigInteger.prototype.pow = bnPow;
- BigInteger.prototype.gcd = bnGCD;
- BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
-
- // JSBN-specific extension
- BigInteger.prototype.square = bnSquare;
-
- // Expose the Barrett function
- BigInteger.prototype.Barrett = Barrett
-
- // BigInteger interfaces not implemented in jsbn:
-
- // BigInteger(int signum, byte[] magnitude)
- // double doubleValue()
- // float floatValue()
- // int hashCode()
- // long longValue()
- // static BigInteger valueOf(long val)
-
- // Random number generator - requires a PRNG backend, e.g. prng4.js
-
- // For best results, put code like
- // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
- // in your main HTML document.
-
- var rng_state;
- var rng_pool;
- var rng_pptr;
-
- // Mix in a 32-bit integer into the pool
- function rng_seed_int(x) {
- rng_pool[rng_pptr++] ^= x & 255;
- rng_pool[rng_pptr++] ^= (x >> 8) & 255;
- rng_pool[rng_pptr++] ^= (x >> 16) & 255;
- rng_pool[rng_pptr++] ^= (x >> 24) & 255;
- if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
- }
-
- // Mix in the current time (w/milliseconds) into the pool
- function rng_seed_time() {
- rng_seed_int(new Date().getTime());
- }
-
- // Initialize the pool with junk if needed.
- if(rng_pool == null) {
- rng_pool = new Array();
- rng_pptr = 0;
- var t;
- if(typeof window !== "undefined" && window.crypto) {
- if (window.crypto.getRandomValues) {
- // Use webcrypto if available
- var ua = new Uint8Array(32);
- window.crypto.getRandomValues(ua);
- for(t = 0; t < 32; ++t)
- rng_pool[rng_pptr++] = ua[t];
- }
- else if(navigator.appName == "Netscape" && navigator.appVersion < "5") {
- // Extract entropy (256 bits) from NS4 RNG if available
- var z = window.crypto.random(32);
- for(t = 0; t < z.length; ++t)
- rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
- }
- }
- while(rng_pptr < rng_psize) { // extract some randomness from Math.random()
- t = Math.floor(65536 * Math.random());
- rng_pool[rng_pptr++] = t >>> 8;
- rng_pool[rng_pptr++] = t & 255;
- }
- rng_pptr = 0;
- rng_seed_time();
- //rng_seed_int(window.screenX);
- //rng_seed_int(window.screenY);
- }
-
- function rng_get_byte() {
- if(rng_state == null) {
- rng_seed_time();
- rng_state = prng_newstate();
- rng_state.init(rng_pool);
- for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
- rng_pool[rng_pptr] = 0;
- rng_pptr = 0;
- //rng_pool = null;
- }
- // TODO: allow reseeding after first request
- return rng_state.next();
- }
-
- function rng_get_bytes(ba) {
- var i;
- for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
- }
-
- function SecureRandom() {}
-
- SecureRandom.prototype.nextBytes = rng_get_bytes;
-
- // prng4.js - uses Arcfour as a PRNG
-
- function Arcfour() {
- this.i = 0;
- this.j = 0;
- this.S = new Array();
- }
-
- // Initialize arcfour context from key, an array of ints, each from [0..255]
- function ARC4init(key) {
- var i, j, t;
- for(i = 0; i < 256; ++i)
- this.S[i] = i;
- j = 0;
- for(i = 0; i < 256; ++i) {
- j = (j + this.S[i] + key[i % key.length]) & 255;
- t = this.S[i];
- this.S[i] = this.S[j];
- this.S[j] = t;
- }
- this.i = 0;
- this.j = 0;
- }
-
- function ARC4next() {
- var t;
- this.i = (this.i + 1) & 255;
- this.j = (this.j + this.S[this.i]) & 255;
- t = this.S[this.i];
- this.S[this.i] = this.S[this.j];
- this.S[this.j] = t;
- return this.S[(t + this.S[this.i]) & 255];
- }
-
- Arcfour.prototype.init = ARC4init;
- Arcfour.prototype.next = ARC4next;
-
- // Plug in your RNG constructor here
- function prng_newstate() {
- return new Arcfour();
- }
-
- // Pool size must be a multiple of 4 and greater than 32.
- // An array of bytes the size of the pool will be passed to init()
- var rng_psize = 256;
-
- BigInteger.SecureRandom = SecureRandom;
- BigInteger.BigInteger = BigInteger;
- if (typeof exports !== 'undefined') {
- exports = module.exports = BigInteger;
- } else {
- this.BigInteger = BigInteger;
- this.SecureRandom = SecureRandom;
- }
-
- }).call(this);
|