generated from freudenreichan/info2Praktikum-DobleSpiel
106 lines
3.2 KiB
C
106 lines
3.2 KiB
C
#include <string.h>
|
|
#include "stack.h"
|
|
#include "bintree.h"
|
|
|
|
//TODO: binären Suchbaum implementieren
|
|
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
|
|
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
|
|
* `treeSize`: zählt die Knoten im Baum (rekursiv),
|
|
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
|
|
|
|
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
|
|
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
|
|
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
|
|
{
|
|
if (!data){
|
|
return NULL;
|
|
}
|
|
|
|
if (!root){ //Neuen Node
|
|
TreeNode *new = malloc(sizeof(TreeNode));
|
|
if (!new){
|
|
return NULL;
|
|
}
|
|
new->data = malloc(dataSize);
|
|
if (!new->data){
|
|
free(new);
|
|
return NULL;
|
|
}
|
|
|
|
memcpy(new->data, data, dataSize); //data übertragen
|
|
new->left = new->right = NULL;
|
|
|
|
if (isDuplicate){
|
|
*isDuplicate = 0;
|
|
}
|
|
return new;
|
|
}
|
|
|
|
int cmp = compareFct(data, root->data);
|
|
|
|
if (cmp < 0) {
|
|
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
|
|
} else if (cmp > 0) {
|
|
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
|
|
} else {
|
|
if (isDuplicate == NULL) {
|
|
root->left = addToTree(root->left, data, dataSize, compareFct, NULL);
|
|
} else {
|
|
*isDuplicate = 1;
|
|
}
|
|
}
|
|
|
|
return root;
|
|
}
|
|
|
|
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
|
|
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
|
|
// push the top node and push all its left nodes.
|
|
void *nextTreeData(TreeNode *root)
|
|
{
|
|
static StackNode *stack = NULL;
|
|
static int initialized = 0;
|
|
|
|
if (root != NULL) { // Initialisierung: Stack leeren und mit root + linke elemente befüllen
|
|
while (stack != NULL) {
|
|
stack = pop(stack);
|
|
}
|
|
while (root != NULL) {
|
|
stack = push(stack, root);
|
|
root = root->left;
|
|
}
|
|
initialized = 1;
|
|
} else if (!initialized) { // Noch nicht initialisiert und kein root übergeben
|
|
return NULL;
|
|
}
|
|
|
|
if (stack == NULL) { //Ende
|
|
initialized = 0;
|
|
return NULL;
|
|
}
|
|
|
|
TreeNode *topNode = (TreeNode *)top(stack);
|
|
stack = pop(stack);
|
|
|
|
if (topNode->right != NULL) {
|
|
TreeNode *r = topNode->right;
|
|
while (r != NULL) {
|
|
stack = push(stack, r);
|
|
r = r->left;
|
|
}
|
|
}
|
|
|
|
return topNode->data;
|
|
}
|
|
|
|
// Releases all memory resources (including data copies).
|
|
void clearTree(TreeNode *root)
|
|
{
|
|
|
|
}
|
|
|
|
// Returns the number of entries in the tree given by root.
|
|
unsigned int treeSize(const TreeNode *root)
|
|
{
|
|
|
|
} |