Innerhlab dieses Repositorys ist ein showcase ausgearbeitet, welcher live die Funktion des EVM Algorithmus darstellt.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

deploy.prototxt 27KB

3 weeks ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790
  1. input: "data"
  2. input_shape {
  3. dim: 1
  4. dim: 3
  5. dim: 300
  6. dim: 300
  7. }
  8. layer {
  9. name: "data_bn"
  10. type: "BatchNorm"
  11. bottom: "data"
  12. top: "data_bn"
  13. param {
  14. lr_mult: 0.0
  15. }
  16. param {
  17. lr_mult: 0.0
  18. }
  19. param {
  20. lr_mult: 0.0
  21. }
  22. }
  23. layer {
  24. name: "data_scale"
  25. type: "Scale"
  26. bottom: "data_bn"
  27. top: "data_bn"
  28. param {
  29. lr_mult: 1.0
  30. decay_mult: 1.0
  31. }
  32. param {
  33. lr_mult: 2.0
  34. decay_mult: 1.0
  35. }
  36. scale_param {
  37. bias_term: true
  38. }
  39. }
  40. layer {
  41. name: "conv1_h"
  42. type: "Convolution"
  43. bottom: "data_bn"
  44. top: "conv1_h"
  45. param {
  46. lr_mult: 1.0
  47. decay_mult: 1.0
  48. }
  49. param {
  50. lr_mult: 2.0
  51. decay_mult: 1.0
  52. }
  53. convolution_param {
  54. num_output: 32
  55. pad: 3
  56. kernel_size: 7
  57. stride: 2
  58. weight_filler {
  59. type: "msra"
  60. variance_norm: FAN_OUT
  61. }
  62. bias_filler {
  63. type: "constant"
  64. value: 0.0
  65. }
  66. }
  67. }
  68. layer {
  69. name: "conv1_bn_h"
  70. type: "BatchNorm"
  71. bottom: "conv1_h"
  72. top: "conv1_h"
  73. param {
  74. lr_mult: 0.0
  75. }
  76. param {
  77. lr_mult: 0.0
  78. }
  79. param {
  80. lr_mult: 0.0
  81. }
  82. }
  83. layer {
  84. name: "conv1_scale_h"
  85. type: "Scale"
  86. bottom: "conv1_h"
  87. top: "conv1_h"
  88. param {
  89. lr_mult: 1.0
  90. decay_mult: 1.0
  91. }
  92. param {
  93. lr_mult: 2.0
  94. decay_mult: 1.0
  95. }
  96. scale_param {
  97. bias_term: true
  98. }
  99. }
  100. layer {
  101. name: "conv1_relu"
  102. type: "ReLU"
  103. bottom: "conv1_h"
  104. top: "conv1_h"
  105. }
  106. layer {
  107. name: "conv1_pool"
  108. type: "Pooling"
  109. bottom: "conv1_h"
  110. top: "conv1_pool"
  111. pooling_param {
  112. kernel_size: 3
  113. stride: 2
  114. }
  115. }
  116. layer {
  117. name: "layer_64_1_conv1_h"
  118. type: "Convolution"
  119. bottom: "conv1_pool"
  120. top: "layer_64_1_conv1_h"
  121. param {
  122. lr_mult: 1.0
  123. decay_mult: 1.0
  124. }
  125. convolution_param {
  126. num_output: 32
  127. bias_term: false
  128. pad: 1
  129. kernel_size: 3
  130. stride: 1
  131. weight_filler {
  132. type: "msra"
  133. }
  134. bias_filler {
  135. type: "constant"
  136. value: 0.0
  137. }
  138. }
  139. }
  140. layer {
  141. name: "layer_64_1_bn2_h"
  142. type: "BatchNorm"
  143. bottom: "layer_64_1_conv1_h"
  144. top: "layer_64_1_conv1_h"
  145. param {
  146. lr_mult: 0.0
  147. }
  148. param {
  149. lr_mult: 0.0
  150. }
  151. param {
  152. lr_mult: 0.0
  153. }
  154. }
  155. layer {
  156. name: "layer_64_1_scale2_h"
  157. type: "Scale"
  158. bottom: "layer_64_1_conv1_h"
  159. top: "layer_64_1_conv1_h"
  160. param {
  161. lr_mult: 1.0
  162. decay_mult: 1.0
  163. }
  164. param {
  165. lr_mult: 2.0
  166. decay_mult: 1.0
  167. }
  168. scale_param {
  169. bias_term: true
  170. }
  171. }
  172. layer {
  173. name: "layer_64_1_relu2"
  174. type: "ReLU"
  175. bottom: "layer_64_1_conv1_h"
  176. top: "layer_64_1_conv1_h"
  177. }
  178. layer {
  179. name: "layer_64_1_conv2_h"
  180. type: "Convolution"
  181. bottom: "layer_64_1_conv1_h"
  182. top: "layer_64_1_conv2_h"
  183. param {
  184. lr_mult: 1.0
  185. decay_mult: 1.0
  186. }
  187. convolution_param {
  188. num_output: 32
  189. bias_term: false
  190. pad: 1
  191. kernel_size: 3
  192. stride: 1
  193. weight_filler {
  194. type: "msra"
  195. }
  196. bias_filler {
  197. type: "constant"
  198. value: 0.0
  199. }
  200. }
  201. }
  202. layer {
  203. name: "layer_64_1_sum"
  204. type: "Eltwise"
  205. bottom: "layer_64_1_conv2_h"
  206. bottom: "conv1_pool"
  207. top: "layer_64_1_sum"
  208. }
  209. layer {
  210. name: "layer_128_1_bn1_h"
  211. type: "BatchNorm"
  212. bottom: "layer_64_1_sum"
  213. top: "layer_128_1_bn1_h"
  214. param {
  215. lr_mult: 0.0
  216. }
  217. param {
  218. lr_mult: 0.0
  219. }
  220. param {
  221. lr_mult: 0.0
  222. }
  223. }
  224. layer {
  225. name: "layer_128_1_scale1_h"
  226. type: "Scale"
  227. bottom: "layer_128_1_bn1_h"
  228. top: "layer_128_1_bn1_h"
  229. param {
  230. lr_mult: 1.0
  231. decay_mult: 1.0
  232. }
  233. param {
  234. lr_mult: 2.0
  235. decay_mult: 1.0
  236. }
  237. scale_param {
  238. bias_term: true
  239. }
  240. }
  241. layer {
  242. name: "layer_128_1_relu1"
  243. type: "ReLU"
  244. bottom: "layer_128_1_bn1_h"
  245. top: "layer_128_1_bn1_h"
  246. }
  247. layer {
  248. name: "layer_128_1_conv1_h"
  249. type: "Convolution"
  250. bottom: "layer_128_1_bn1_h"
  251. top: "layer_128_1_conv1_h"
  252. param {
  253. lr_mult: 1.0
  254. decay_mult: 1.0
  255. }
  256. convolution_param {
  257. num_output: 128
  258. bias_term: false
  259. pad: 1
  260. kernel_size: 3
  261. stride: 2
  262. weight_filler {
  263. type: "msra"
  264. }
  265. bias_filler {
  266. type: "constant"
  267. value: 0.0
  268. }
  269. }
  270. }
  271. layer {
  272. name: "layer_128_1_bn2"
  273. type: "BatchNorm"
  274. bottom: "layer_128_1_conv1_h"
  275. top: "layer_128_1_conv1_h"
  276. param {
  277. lr_mult: 0.0
  278. }
  279. param {
  280. lr_mult: 0.0
  281. }
  282. param {
  283. lr_mult: 0.0
  284. }
  285. }
  286. layer {
  287. name: "layer_128_1_scale2"
  288. type: "Scale"
  289. bottom: "layer_128_1_conv1_h"
  290. top: "layer_128_1_conv1_h"
  291. param {
  292. lr_mult: 1.0
  293. decay_mult: 1.0
  294. }
  295. param {
  296. lr_mult: 2.0
  297. decay_mult: 1.0
  298. }
  299. scale_param {
  300. bias_term: true
  301. }
  302. }
  303. layer {
  304. name: "layer_128_1_relu2"
  305. type: "ReLU"
  306. bottom: "layer_128_1_conv1_h"
  307. top: "layer_128_1_conv1_h"
  308. }
  309. layer {
  310. name: "layer_128_1_conv2"
  311. type: "Convolution"
  312. bottom: "layer_128_1_conv1_h"
  313. top: "layer_128_1_conv2"
  314. param {
  315. lr_mult: 1.0
  316. decay_mult: 1.0
  317. }
  318. convolution_param {
  319. num_output: 128
  320. bias_term: false
  321. pad: 1
  322. kernel_size: 3
  323. stride: 1
  324. weight_filler {
  325. type: "msra"
  326. }
  327. bias_filler {
  328. type: "constant"
  329. value: 0.0
  330. }
  331. }
  332. }
  333. layer {
  334. name: "layer_128_1_conv_expand_h"
  335. type: "Convolution"
  336. bottom: "layer_128_1_bn1_h"
  337. top: "layer_128_1_conv_expand_h"
  338. param {
  339. lr_mult: 1.0
  340. decay_mult: 1.0
  341. }
  342. convolution_param {
  343. num_output: 128
  344. bias_term: false
  345. pad: 0
  346. kernel_size: 1
  347. stride: 2
  348. weight_filler {
  349. type: "msra"
  350. }
  351. bias_filler {
  352. type: "constant"
  353. value: 0.0
  354. }
  355. }
  356. }
  357. layer {
  358. name: "layer_128_1_sum"
  359. type: "Eltwise"
  360. bottom: "layer_128_1_conv2"
  361. bottom: "layer_128_1_conv_expand_h"
  362. top: "layer_128_1_sum"
  363. }
  364. layer {
  365. name: "layer_256_1_bn1"
  366. type: "BatchNorm"
  367. bottom: "layer_128_1_sum"
  368. top: "layer_256_1_bn1"
  369. param {
  370. lr_mult: 0.0
  371. }
  372. param {
  373. lr_mult: 0.0
  374. }
  375. param {
  376. lr_mult: 0.0
  377. }
  378. }
  379. layer {
  380. name: "layer_256_1_scale1"
  381. type: "Scale"
  382. bottom: "layer_256_1_bn1"
  383. top: "layer_256_1_bn1"
  384. param {
  385. lr_mult: 1.0
  386. decay_mult: 1.0
  387. }
  388. param {
  389. lr_mult: 2.0
  390. decay_mult: 1.0
  391. }
  392. scale_param {
  393. bias_term: true
  394. }
  395. }
  396. layer {
  397. name: "layer_256_1_relu1"
  398. type: "ReLU"
  399. bottom: "layer_256_1_bn1"
  400. top: "layer_256_1_bn1"
  401. }
  402. layer {
  403. name: "layer_256_1_conv1"
  404. type: "Convolution"
  405. bottom: "layer_256_1_bn1"
  406. top: "layer_256_1_conv1"
  407. param {
  408. lr_mult: 1.0
  409. decay_mult: 1.0
  410. }
  411. convolution_param {
  412. num_output: 256
  413. bias_term: false
  414. pad: 1
  415. kernel_size: 3
  416. stride: 2
  417. weight_filler {
  418. type: "msra"
  419. }
  420. bias_filler {
  421. type: "constant"
  422. value: 0.0
  423. }
  424. }
  425. }
  426. layer {
  427. name: "layer_256_1_bn2"
  428. type: "BatchNorm"
  429. bottom: "layer_256_1_conv1"
  430. top: "layer_256_1_conv1"
  431. param {
  432. lr_mult: 0.0
  433. }
  434. param {
  435. lr_mult: 0.0
  436. }
  437. param {
  438. lr_mult: 0.0
  439. }
  440. }
  441. layer {
  442. name: "layer_256_1_scale2"
  443. type: "Scale"
  444. bottom: "layer_256_1_conv1"
  445. top: "layer_256_1_conv1"
  446. param {
  447. lr_mult: 1.0
  448. decay_mult: 1.0
  449. }
  450. param {
  451. lr_mult: 2.0
  452. decay_mult: 1.0
  453. }
  454. scale_param {
  455. bias_term: true
  456. }
  457. }
  458. layer {
  459. name: "layer_256_1_relu2"
  460. type: "ReLU"
  461. bottom: "layer_256_1_conv1"
  462. top: "layer_256_1_conv1"
  463. }
  464. layer {
  465. name: "layer_256_1_conv2"
  466. type: "Convolution"
  467. bottom: "layer_256_1_conv1"
  468. top: "layer_256_1_conv2"
  469. param {
  470. lr_mult: 1.0
  471. decay_mult: 1.0
  472. }
  473. convolution_param {
  474. num_output: 256
  475. bias_term: false
  476. pad: 1
  477. kernel_size: 3
  478. stride: 1
  479. weight_filler {
  480. type: "msra"
  481. }
  482. bias_filler {
  483. type: "constant"
  484. value: 0.0
  485. }
  486. }
  487. }
  488. layer {
  489. name: "layer_256_1_conv_expand"
  490. type: "Convolution"
  491. bottom: "layer_256_1_bn1"
  492. top: "layer_256_1_conv_expand"
  493. param {
  494. lr_mult: 1.0
  495. decay_mult: 1.0
  496. }
  497. convolution_param {
  498. num_output: 256
  499. bias_term: false
  500. pad: 0
  501. kernel_size: 1
  502. stride: 2
  503. weight_filler {
  504. type: "msra"
  505. }
  506. bias_filler {
  507. type: "constant"
  508. value: 0.0
  509. }
  510. }
  511. }
  512. layer {
  513. name: "layer_256_1_sum"
  514. type: "Eltwise"
  515. bottom: "layer_256_1_conv2"
  516. bottom: "layer_256_1_conv_expand"
  517. top: "layer_256_1_sum"
  518. }
  519. layer {
  520. name: "layer_512_1_bn1"
  521. type: "BatchNorm"
  522. bottom: "layer_256_1_sum"
  523. top: "layer_512_1_bn1"
  524. param {
  525. lr_mult: 0.0
  526. }
  527. param {
  528. lr_mult: 0.0
  529. }
  530. param {
  531. lr_mult: 0.0
  532. }
  533. }
  534. layer {
  535. name: "layer_512_1_scale1"
  536. type: "Scale"
  537. bottom: "layer_512_1_bn1"
  538. top: "layer_512_1_bn1"
  539. param {
  540. lr_mult: 1.0
  541. decay_mult: 1.0
  542. }
  543. param {
  544. lr_mult: 2.0
  545. decay_mult: 1.0
  546. }
  547. scale_param {
  548. bias_term: true
  549. }
  550. }
  551. layer {
  552. name: "layer_512_1_relu1"
  553. type: "ReLU"
  554. bottom: "layer_512_1_bn1"
  555. top: "layer_512_1_bn1"
  556. }
  557. layer {
  558. name: "layer_512_1_conv1_h"
  559. type: "Convolution"
  560. bottom: "layer_512_1_bn1"
  561. top: "layer_512_1_conv1_h"
  562. param {
  563. lr_mult: 1.0
  564. decay_mult: 1.0
  565. }
  566. convolution_param {
  567. num_output: 128
  568. bias_term: false
  569. pad: 1
  570. kernel_size: 3
  571. stride: 1 # 2
  572. weight_filler {
  573. type: "msra"
  574. }
  575. bias_filler {
  576. type: "constant"
  577. value: 0.0
  578. }
  579. }
  580. }
  581. layer {
  582. name: "layer_512_1_bn2_h"
  583. type: "BatchNorm"
  584. bottom: "layer_512_1_conv1_h"
  585. top: "layer_512_1_conv1_h"
  586. param {
  587. lr_mult: 0.0
  588. }
  589. param {
  590. lr_mult: 0.0
  591. }
  592. param {
  593. lr_mult: 0.0
  594. }
  595. }
  596. layer {
  597. name: "layer_512_1_scale2_h"
  598. type: "Scale"
  599. bottom: "layer_512_1_conv1_h"
  600. top: "layer_512_1_conv1_h"
  601. param {
  602. lr_mult: 1.0
  603. decay_mult: 1.0
  604. }
  605. param {
  606. lr_mult: 2.0
  607. decay_mult: 1.0
  608. }
  609. scale_param {
  610. bias_term: true
  611. }
  612. }
  613. layer {
  614. name: "layer_512_1_relu2"
  615. type: "ReLU"
  616. bottom: "layer_512_1_conv1_h"
  617. top: "layer_512_1_conv1_h"
  618. }
  619. layer {
  620. name: "layer_512_1_conv2_h"
  621. type: "Convolution"
  622. bottom: "layer_512_1_conv1_h"
  623. top: "layer_512_1_conv2_h"
  624. param {
  625. lr_mult: 1.0
  626. decay_mult: 1.0
  627. }
  628. convolution_param {
  629. num_output: 256
  630. bias_term: false
  631. pad: 2 # 1
  632. kernel_size: 3
  633. stride: 1
  634. dilation: 2
  635. weight_filler {
  636. type: "msra"
  637. }
  638. bias_filler {
  639. type: "constant"
  640. value: 0.0
  641. }
  642. }
  643. }
  644. layer {
  645. name: "layer_512_1_conv_expand_h"
  646. type: "Convolution"
  647. bottom: "layer_512_1_bn1"
  648. top: "layer_512_1_conv_expand_h"
  649. param {
  650. lr_mult: 1.0
  651. decay_mult: 1.0
  652. }
  653. convolution_param {
  654. num_output: 256
  655. bias_term: false
  656. pad: 0
  657. kernel_size: 1
  658. stride: 1 # 2
  659. weight_filler {
  660. type: "msra"
  661. }
  662. bias_filler {
  663. type: "constant"
  664. value: 0.0
  665. }
  666. }
  667. }
  668. layer {
  669. name: "layer_512_1_sum"
  670. type: "Eltwise"
  671. bottom: "layer_512_1_conv2_h"
  672. bottom: "layer_512_1_conv_expand_h"
  673. top: "layer_512_1_sum"
  674. }
  675. layer {
  676. name: "last_bn_h"
  677. type: "BatchNorm"
  678. bottom: "layer_512_1_sum"
  679. top: "layer_512_1_sum"
  680. param {
  681. lr_mult: 0.0
  682. }
  683. param {
  684. lr_mult: 0.0
  685. }
  686. param {
  687. lr_mult: 0.0
  688. }
  689. }
  690. layer {
  691. name: "last_scale_h"
  692. type: "Scale"
  693. bottom: "layer_512_1_sum"
  694. top: "layer_512_1_sum"
  695. param {
  696. lr_mult: 1.0
  697. decay_mult: 1.0
  698. }
  699. param {
  700. lr_mult: 2.0
  701. decay_mult: 1.0
  702. }
  703. scale_param {
  704. bias_term: true
  705. }
  706. }
  707. layer {
  708. name: "last_relu"
  709. type: "ReLU"
  710. bottom: "layer_512_1_sum"
  711. top: "fc7"
  712. }
  713. layer {
  714. name: "conv6_1_h"
  715. type: "Convolution"
  716. bottom: "fc7"
  717. top: "conv6_1_h"
  718. param {
  719. lr_mult: 1
  720. decay_mult: 1
  721. }
  722. param {
  723. lr_mult: 2
  724. decay_mult: 0
  725. }
  726. convolution_param {
  727. num_output: 128
  728. pad: 0
  729. kernel_size: 1
  730. stride: 1
  731. weight_filler {
  732. type: "xavier"
  733. }
  734. bias_filler {
  735. type: "constant"
  736. value: 0
  737. }
  738. }
  739. }
  740. layer {
  741. name: "conv6_1_relu"
  742. type: "ReLU"
  743. bottom: "conv6_1_h"
  744. top: "conv6_1_h"
  745. }
  746. layer {
  747. name: "conv6_2_h"
  748. type: "Convolution"
  749. bottom: "conv6_1_h"
  750. top: "conv6_2_h"
  751. param {
  752. lr_mult: 1
  753. decay_mult: 1
  754. }
  755. param {
  756. lr_mult: 2
  757. decay_mult: 0
  758. }
  759. convolution_param {
  760. num_output: 256
  761. pad: 1
  762. kernel_size: 3
  763. stride: 2
  764. weight_filler {
  765. type: "xavier"
  766. }
  767. bias_filler {
  768. type: "constant"
  769. value: 0
  770. }
  771. }
  772. }
  773. layer {
  774. name: "conv6_2_relu"
  775. type: "ReLU"
  776. bottom: "conv6_2_h"
  777. top: "conv6_2_h"
  778. }
  779. layer {
  780. name: "conv7_1_h"
  781. type: "Convolution"
  782. bottom: "conv6_2_h"
  783. top: "conv7_1_h"
  784. param {
  785. lr_mult: 1
  786. decay_mult: 1
  787. }
  788. param {
  789. lr_mult: 2
  790. decay_mult: 0
  791. }
  792. convolution_param {
  793. num_output: 64
  794. pad: 0
  795. kernel_size: 1
  796. stride: 1
  797. weight_filler {
  798. type: "xavier"
  799. }
  800. bias_filler {
  801. type: "constant"
  802. value: 0
  803. }
  804. }
  805. }
  806. layer {
  807. name: "conv7_1_relu"
  808. type: "ReLU"
  809. bottom: "conv7_1_h"
  810. top: "conv7_1_h"
  811. }
  812. layer {
  813. name: "conv7_2_h"
  814. type: "Convolution"
  815. bottom: "conv7_1_h"
  816. top: "conv7_2_h"
  817. param {
  818. lr_mult: 1
  819. decay_mult: 1
  820. }
  821. param {
  822. lr_mult: 2
  823. decay_mult: 0
  824. }
  825. convolution_param {
  826. num_output: 128
  827. pad: 1
  828. kernel_size: 3
  829. stride: 2
  830. weight_filler {
  831. type: "xavier"
  832. }
  833. bias_filler {
  834. type: "constant"
  835. value: 0
  836. }
  837. }
  838. }
  839. layer {
  840. name: "conv7_2_relu"
  841. type: "ReLU"
  842. bottom: "conv7_2_h"
  843. top: "conv7_2_h"
  844. }
  845. layer {
  846. name: "conv8_1_h"
  847. type: "Convolution"
  848. bottom: "conv7_2_h"
  849. top: "conv8_1_h"
  850. param {
  851. lr_mult: 1
  852. decay_mult: 1
  853. }
  854. param {
  855. lr_mult: 2
  856. decay_mult: 0
  857. }
  858. convolution_param {
  859. num_output: 64
  860. pad: 0
  861. kernel_size: 1
  862. stride: 1
  863. weight_filler {
  864. type: "xavier"
  865. }
  866. bias_filler {
  867. type: "constant"
  868. value: 0
  869. }
  870. }
  871. }
  872. layer {
  873. name: "conv8_1_relu"
  874. type: "ReLU"
  875. bottom: "conv8_1_h"
  876. top: "conv8_1_h"
  877. }
  878. layer {
  879. name: "conv8_2_h"
  880. type: "Convolution"
  881. bottom: "conv8_1_h"
  882. top: "conv8_2_h"
  883. param {
  884. lr_mult: 1
  885. decay_mult: 1
  886. }
  887. param {
  888. lr_mult: 2
  889. decay_mult: 0
  890. }
  891. convolution_param {
  892. num_output: 128
  893. pad: 0
  894. kernel_size: 3
  895. stride: 1
  896. weight_filler {
  897. type: "xavier"
  898. }
  899. bias_filler {
  900. type: "constant"
  901. value: 0
  902. }
  903. }
  904. }
  905. layer {
  906. name: "conv8_2_relu"
  907. type: "ReLU"
  908. bottom: "conv8_2_h"
  909. top: "conv8_2_h"
  910. }
  911. layer {
  912. name: "conv9_1_h"
  913. type: "Convolution"
  914. bottom: "conv8_2_h"
  915. top: "conv9_1_h"
  916. param {
  917. lr_mult: 1
  918. decay_mult: 1
  919. }
  920. param {
  921. lr_mult: 2
  922. decay_mult: 0
  923. }
  924. convolution_param {
  925. num_output: 64
  926. pad: 0
  927. kernel_size: 1
  928. stride: 1
  929. weight_filler {
  930. type: "xavier"
  931. }
  932. bias_filler {
  933. type: "constant"
  934. value: 0
  935. }
  936. }
  937. }
  938. layer {
  939. name: "conv9_1_relu"
  940. type: "ReLU"
  941. bottom: "conv9_1_h"
  942. top: "conv9_1_h"
  943. }
  944. layer {
  945. name: "conv9_2_h"
  946. type: "Convolution"
  947. bottom: "conv9_1_h"
  948. top: "conv9_2_h"
  949. param {
  950. lr_mult: 1
  951. decay_mult: 1
  952. }
  953. param {
  954. lr_mult: 2
  955. decay_mult: 0
  956. }
  957. convolution_param {
  958. num_output: 128
  959. pad: 0
  960. kernel_size: 3
  961. stride: 1
  962. weight_filler {
  963. type: "xavier"
  964. }
  965. bias_filler {
  966. type: "constant"
  967. value: 0
  968. }
  969. }
  970. }
  971. layer {
  972. name: "conv9_2_relu"
  973. type: "ReLU"
  974. bottom: "conv9_2_h"
  975. top: "conv9_2_h"
  976. }
  977. layer {
  978. name: "conv4_3_norm"
  979. type: "Normalize"
  980. bottom: "layer_256_1_bn1"
  981. top: "conv4_3_norm"
  982. norm_param {
  983. across_spatial: false
  984. scale_filler {
  985. type: "constant"
  986. value: 20
  987. }
  988. channel_shared: false
  989. }
  990. }
  991. layer {
  992. name: "conv4_3_norm_mbox_loc"
  993. type: "Convolution"
  994. bottom: "conv4_3_norm"
  995. top: "conv4_3_norm_mbox_loc"
  996. param {
  997. lr_mult: 1
  998. decay_mult: 1
  999. }
  1000. param {
  1001. lr_mult: 2
  1002. decay_mult: 0
  1003. }
  1004. convolution_param {
  1005. num_output: 16
  1006. pad: 1
  1007. kernel_size: 3
  1008. stride: 1
  1009. weight_filler {
  1010. type: "xavier"
  1011. }
  1012. bias_filler {
  1013. type: "constant"
  1014. value: 0
  1015. }
  1016. }
  1017. }
  1018. layer {
  1019. name: "conv4_3_norm_mbox_loc_perm"
  1020. type: "Permute"
  1021. bottom: "conv4_3_norm_mbox_loc"
  1022. top: "conv4_3_norm_mbox_loc_perm"
  1023. permute_param {
  1024. order: 0
  1025. order: 2
  1026. order: 3
  1027. order: 1
  1028. }
  1029. }
  1030. layer {
  1031. name: "conv4_3_norm_mbox_loc_flat"
  1032. type: "Flatten"
  1033. bottom: "conv4_3_norm_mbox_loc_perm"
  1034. top: "conv4_3_norm_mbox_loc_flat"
  1035. flatten_param {
  1036. axis: 1
  1037. }
  1038. }
  1039. layer {
  1040. name: "conv4_3_norm_mbox_conf"
  1041. type: "Convolution"
  1042. bottom: "conv4_3_norm"
  1043. top: "conv4_3_norm_mbox_conf"
  1044. param {
  1045. lr_mult: 1
  1046. decay_mult: 1
  1047. }
  1048. param {
  1049. lr_mult: 2
  1050. decay_mult: 0
  1051. }
  1052. convolution_param {
  1053. num_output: 8 # 84
  1054. pad: 1
  1055. kernel_size: 3
  1056. stride: 1
  1057. weight_filler {
  1058. type: "xavier"
  1059. }
  1060. bias_filler {
  1061. type: "constant"
  1062. value: 0
  1063. }
  1064. }
  1065. }
  1066. layer {
  1067. name: "conv4_3_norm_mbox_conf_perm"
  1068. type: "Permute"
  1069. bottom: "conv4_3_norm_mbox_conf"
  1070. top: "conv4_3_norm_mbox_conf_perm"
  1071. permute_param {
  1072. order: 0
  1073. order: 2
  1074. order: 3
  1075. order: 1
  1076. }
  1077. }
  1078. layer {
  1079. name: "conv4_3_norm_mbox_conf_flat"
  1080. type: "Flatten"
  1081. bottom: "conv4_3_norm_mbox_conf_perm"
  1082. top: "conv4_3_norm_mbox_conf_flat"
  1083. flatten_param {
  1084. axis: 1
  1085. }
  1086. }
  1087. layer {
  1088. name: "conv4_3_norm_mbox_priorbox"
  1089. type: "PriorBox"
  1090. bottom: "conv4_3_norm"
  1091. bottom: "data"
  1092. top: "conv4_3_norm_mbox_priorbox"
  1093. prior_box_param {
  1094. min_size: 30.0
  1095. max_size: 60.0
  1096. aspect_ratio: 2
  1097. flip: true
  1098. clip: false
  1099. variance: 0.1
  1100. variance: 0.1
  1101. variance: 0.2
  1102. variance: 0.2
  1103. step: 8
  1104. offset: 0.5
  1105. }
  1106. }
  1107. layer {
  1108. name: "fc7_mbox_loc"
  1109. type: "Convolution"
  1110. bottom: "fc7"
  1111. top: "fc7_mbox_loc"
  1112. param {
  1113. lr_mult: 1
  1114. decay_mult: 1
  1115. }
  1116. param {
  1117. lr_mult: 2
  1118. decay_mult: 0
  1119. }
  1120. convolution_param {
  1121. num_output: 24
  1122. pad: 1
  1123. kernel_size: 3
  1124. stride: 1
  1125. weight_filler {
  1126. type: "xavier"
  1127. }
  1128. bias_filler {
  1129. type: "constant"
  1130. value: 0
  1131. }
  1132. }
  1133. }
  1134. layer {
  1135. name: "fc7_mbox_loc_perm"
  1136. type: "Permute"
  1137. bottom: "fc7_mbox_loc"
  1138. top: "fc7_mbox_loc_perm"
  1139. permute_param {
  1140. order: 0
  1141. order: 2
  1142. order: 3
  1143. order: 1
  1144. }
  1145. }
  1146. layer {
  1147. name: "fc7_mbox_loc_flat"
  1148. type: "Flatten"
  1149. bottom: "fc7_mbox_loc_perm"
  1150. top: "fc7_mbox_loc_flat"
  1151. flatten_param {
  1152. axis: 1
  1153. }
  1154. }
  1155. layer {
  1156. name: "fc7_mbox_conf"
  1157. type: "Convolution"
  1158. bottom: "fc7"
  1159. top: "fc7_mbox_conf"
  1160. param {
  1161. lr_mult: 1
  1162. decay_mult: 1
  1163. }
  1164. param {
  1165. lr_mult: 2
  1166. decay_mult: 0
  1167. }
  1168. convolution_param {
  1169. num_output: 12 # 126
  1170. pad: 1
  1171. kernel_size: 3
  1172. stride: 1
  1173. weight_filler {
  1174. type: "xavier"
  1175. }
  1176. bias_filler {
  1177. type: "constant"
  1178. value: 0
  1179. }
  1180. }
  1181. }
  1182. layer {
  1183. name: "fc7_mbox_conf_perm"
  1184. type: "Permute"
  1185. bottom: "fc7_mbox_conf"
  1186. top: "fc7_mbox_conf_perm"
  1187. permute_param {
  1188. order: 0
  1189. order: 2
  1190. order: 3
  1191. order: 1
  1192. }
  1193. }
  1194. layer {
  1195. name: "fc7_mbox_conf_flat"
  1196. type: "Flatten"
  1197. bottom: "fc7_mbox_conf_perm"
  1198. top: "fc7_mbox_conf_flat"
  1199. flatten_param {
  1200. axis: 1
  1201. }
  1202. }
  1203. layer {
  1204. name: "fc7_mbox_priorbox"
  1205. type: "PriorBox"
  1206. bottom: "fc7"
  1207. bottom: "data"
  1208. top: "fc7_mbox_priorbox"
  1209. prior_box_param {
  1210. min_size: 60.0
  1211. max_size: 111.0
  1212. aspect_ratio: 2
  1213. aspect_ratio: 3
  1214. flip: true
  1215. clip: false
  1216. variance: 0.1
  1217. variance: 0.1
  1218. variance: 0.2
  1219. variance: 0.2
  1220. step: 16
  1221. offset: 0.5
  1222. }
  1223. }
  1224. layer {
  1225. name: "conv6_2_mbox_loc"
  1226. type: "Convolution"
  1227. bottom: "conv6_2_h"
  1228. top: "conv6_2_mbox_loc"
  1229. param {
  1230. lr_mult: 1
  1231. decay_mult: 1
  1232. }
  1233. param {
  1234. lr_mult: 2
  1235. decay_mult: 0
  1236. }
  1237. convolution_param {
  1238. num_output: 24
  1239. pad: 1
  1240. kernel_size: 3
  1241. stride: 1
  1242. weight_filler {
  1243. type: "xavier"
  1244. }
  1245. bias_filler {
  1246. type: "constant"
  1247. value: 0
  1248. }
  1249. }
  1250. }
  1251. layer {
  1252. name: "conv6_2_mbox_loc_perm"
  1253. type: "Permute"
  1254. bottom: "conv6_2_mbox_loc"
  1255. top: "conv6_2_mbox_loc_perm"
  1256. permute_param {
  1257. order: 0
  1258. order: 2
  1259. order: 3
  1260. order: 1
  1261. }
  1262. }
  1263. layer {
  1264. name: "conv6_2_mbox_loc_flat"
  1265. type: "Flatten"
  1266. bottom: "conv6_2_mbox_loc_perm"
  1267. top: "conv6_2_mbox_loc_flat"
  1268. flatten_param {
  1269. axis: 1
  1270. }
  1271. }
  1272. layer {
  1273. name: "conv6_2_mbox_conf"
  1274. type: "Convolution"
  1275. bottom: "conv6_2_h"
  1276. top: "conv6_2_mbox_conf"
  1277. param {
  1278. lr_mult: 1
  1279. decay_mult: 1
  1280. }
  1281. param {
  1282. lr_mult: 2
  1283. decay_mult: 0
  1284. }
  1285. convolution_param {
  1286. num_output: 12 # 126
  1287. pad: 1
  1288. kernel_size: 3
  1289. stride: 1
  1290. weight_filler {
  1291. type: "xavier"
  1292. }
  1293. bias_filler {
  1294. type: "constant"
  1295. value: 0
  1296. }
  1297. }
  1298. }
  1299. layer {
  1300. name: "conv6_2_mbox_conf_perm"
  1301. type: "Permute"
  1302. bottom: "conv6_2_mbox_conf"
  1303. top: "conv6_2_mbox_conf_perm"
  1304. permute_param {
  1305. order: 0
  1306. order: 2
  1307. order: 3
  1308. order: 1
  1309. }
  1310. }
  1311. layer {
  1312. name: "conv6_2_mbox_conf_flat"
  1313. type: "Flatten"
  1314. bottom: "conv6_2_mbox_conf_perm"
  1315. top: "conv6_2_mbox_conf_flat"
  1316. flatten_param {
  1317. axis: 1
  1318. }
  1319. }
  1320. layer {
  1321. name: "conv6_2_mbox_priorbox"
  1322. type: "PriorBox"
  1323. bottom: "conv6_2_h"
  1324. bottom: "data"
  1325. top: "conv6_2_mbox_priorbox"
  1326. prior_box_param {
  1327. min_size: 111.0
  1328. max_size: 162.0
  1329. aspect_ratio: 2
  1330. aspect_ratio: 3
  1331. flip: true
  1332. clip: false
  1333. variance: 0.1
  1334. variance: 0.1
  1335. variance: 0.2
  1336. variance: 0.2
  1337. step: 32
  1338. offset: 0.5
  1339. }
  1340. }
  1341. layer {
  1342. name: "conv7_2_mbox_loc"
  1343. type: "Convolution"
  1344. bottom: "conv7_2_h"
  1345. top: "conv7_2_mbox_loc"
  1346. param {
  1347. lr_mult: 1
  1348. decay_mult: 1
  1349. }
  1350. param {
  1351. lr_mult: 2
  1352. decay_mult: 0
  1353. }
  1354. convolution_param {
  1355. num_output: 24
  1356. pad: 1
  1357. kernel_size: 3
  1358. stride: 1
  1359. weight_filler {
  1360. type: "xavier"
  1361. }
  1362. bias_filler {
  1363. type: "constant"
  1364. value: 0
  1365. }
  1366. }
  1367. }
  1368. layer {
  1369. name: "conv7_2_mbox_loc_perm"
  1370. type: "Permute"
  1371. bottom: "conv7_2_mbox_loc"
  1372. top: "conv7_2_mbox_loc_perm"
  1373. permute_param {
  1374. order: 0
  1375. order: 2
  1376. order: 3
  1377. order: 1
  1378. }
  1379. }
  1380. layer {
  1381. name: "conv7_2_mbox_loc_flat"
  1382. type: "Flatten"
  1383. bottom: "conv7_2_mbox_loc_perm"
  1384. top: "conv7_2_mbox_loc_flat"
  1385. flatten_param {
  1386. axis: 1
  1387. }
  1388. }
  1389. layer {
  1390. name: "conv7_2_mbox_conf"
  1391. type: "Convolution"
  1392. bottom: "conv7_2_h"
  1393. top: "conv7_2_mbox_conf"
  1394. param {
  1395. lr_mult: 1
  1396. decay_mult: 1
  1397. }
  1398. param {
  1399. lr_mult: 2
  1400. decay_mult: 0
  1401. }
  1402. convolution_param {
  1403. num_output: 12 # 126
  1404. pad: 1
  1405. kernel_size: 3
  1406. stride: 1
  1407. weight_filler {
  1408. type: "xavier"
  1409. }
  1410. bias_filler {
  1411. type: "constant"
  1412. value: 0
  1413. }
  1414. }
  1415. }
  1416. layer {
  1417. name: "conv7_2_mbox_conf_perm"
  1418. type: "Permute"
  1419. bottom: "conv7_2_mbox_conf"
  1420. top: "conv7_2_mbox_conf_perm"
  1421. permute_param {
  1422. order: 0
  1423. order: 2
  1424. order: 3
  1425. order: 1
  1426. }
  1427. }
  1428. layer {
  1429. name: "conv7_2_mbox_conf_flat"
  1430. type: "Flatten"
  1431. bottom: "conv7_2_mbox_conf_perm"
  1432. top: "conv7_2_mbox_conf_flat"
  1433. flatten_param {
  1434. axis: 1
  1435. }
  1436. }
  1437. layer {
  1438. name: "conv7_2_mbox_priorbox"
  1439. type: "PriorBox"
  1440. bottom: "conv7_2_h"
  1441. bottom: "data"
  1442. top: "conv7_2_mbox_priorbox"
  1443. prior_box_param {
  1444. min_size: 162.0
  1445. max_size: 213.0
  1446. aspect_ratio: 2
  1447. aspect_ratio: 3
  1448. flip: true
  1449. clip: false
  1450. variance: 0.1
  1451. variance: 0.1
  1452. variance: 0.2
  1453. variance: 0.2
  1454. step: 64
  1455. offset: 0.5
  1456. }
  1457. }
  1458. layer {
  1459. name: "conv8_2_mbox_loc"
  1460. type: "Convolution"
  1461. bottom: "conv8_2_h"
  1462. top: "conv8_2_mbox_loc"
  1463. param {
  1464. lr_mult: 1
  1465. decay_mult: 1
  1466. }
  1467. param {
  1468. lr_mult: 2
  1469. decay_mult: 0
  1470. }
  1471. convolution_param {
  1472. num_output: 16
  1473. pad: 1
  1474. kernel_size: 3
  1475. stride: 1
  1476. weight_filler {
  1477. type: "xavier"
  1478. }
  1479. bias_filler {
  1480. type: "constant"
  1481. value: 0
  1482. }
  1483. }
  1484. }
  1485. layer {
  1486. name: "conv8_2_mbox_loc_perm"
  1487. type: "Permute"
  1488. bottom: "conv8_2_mbox_loc"
  1489. top: "conv8_2_mbox_loc_perm"
  1490. permute_param {
  1491. order: 0
  1492. order: 2
  1493. order: 3
  1494. order: 1
  1495. }
  1496. }
  1497. layer {
  1498. name: "conv8_2_mbox_loc_flat"
  1499. type: "Flatten"
  1500. bottom: "conv8_2_mbox_loc_perm"
  1501. top: "conv8_2_mbox_loc_flat"
  1502. flatten_param {
  1503. axis: 1
  1504. }
  1505. }
  1506. layer {
  1507. name: "conv8_2_mbox_conf"
  1508. type: "Convolution"
  1509. bottom: "conv8_2_h"
  1510. top: "conv8_2_mbox_conf"
  1511. param {
  1512. lr_mult: 1
  1513. decay_mult: 1
  1514. }
  1515. param {
  1516. lr_mult: 2
  1517. decay_mult: 0
  1518. }
  1519. convolution_param {
  1520. num_output: 8 # 84
  1521. pad: 1
  1522. kernel_size: 3
  1523. stride: 1
  1524. weight_filler {
  1525. type: "xavier"
  1526. }
  1527. bias_filler {
  1528. type: "constant"
  1529. value: 0
  1530. }
  1531. }
  1532. }
  1533. layer {
  1534. name: "conv8_2_mbox_conf_perm"
  1535. type: "Permute"
  1536. bottom: "conv8_2_mbox_conf"
  1537. top: "conv8_2_mbox_conf_perm"
  1538. permute_param {
  1539. order: 0
  1540. order: 2
  1541. order: 3
  1542. order: 1
  1543. }
  1544. }
  1545. layer {
  1546. name: "conv8_2_mbox_conf_flat"
  1547. type: "Flatten"
  1548. bottom: "conv8_2_mbox_conf_perm"
  1549. top: "conv8_2_mbox_conf_flat"
  1550. flatten_param {
  1551. axis: 1
  1552. }
  1553. }
  1554. layer {
  1555. name: "conv8_2_mbox_priorbox"
  1556. type: "PriorBox"
  1557. bottom: "conv8_2_h"
  1558. bottom: "data"
  1559. top: "conv8_2_mbox_priorbox"
  1560. prior_box_param {
  1561. min_size: 213.0
  1562. max_size: 264.0
  1563. aspect_ratio: 2
  1564. flip: true
  1565. clip: false
  1566. variance: 0.1
  1567. variance: 0.1
  1568. variance: 0.2
  1569. variance: 0.2
  1570. step: 100
  1571. offset: 0.5
  1572. }
  1573. }
  1574. layer {
  1575. name: "conv9_2_mbox_loc"
  1576. type: "Convolution"
  1577. bottom: "conv9_2_h"
  1578. top: "conv9_2_mbox_loc"
  1579. param {
  1580. lr_mult: 1
  1581. decay_mult: 1
  1582. }
  1583. param {
  1584. lr_mult: 2
  1585. decay_mult: 0
  1586. }
  1587. convolution_param {
  1588. num_output: 16
  1589. pad: 1
  1590. kernel_size: 3
  1591. stride: 1
  1592. weight_filler {
  1593. type: "xavier"
  1594. }
  1595. bias_filler {
  1596. type: "constant"
  1597. value: 0
  1598. }
  1599. }
  1600. }
  1601. layer {
  1602. name: "conv9_2_mbox_loc_perm"
  1603. type: "Permute"
  1604. bottom: "conv9_2_mbox_loc"
  1605. top: "conv9_2_mbox_loc_perm"
  1606. permute_param {
  1607. order: 0
  1608. order: 2
  1609. order: 3
  1610. order: 1
  1611. }
  1612. }
  1613. layer {
  1614. name: "conv9_2_mbox_loc_flat"
  1615. type: "Flatten"
  1616. bottom: "conv9_2_mbox_loc_perm"
  1617. top: "conv9_2_mbox_loc_flat"
  1618. flatten_param {
  1619. axis: 1
  1620. }
  1621. }
  1622. layer {
  1623. name: "conv9_2_mbox_conf"
  1624. type: "Convolution"
  1625. bottom: "conv9_2_h"
  1626. top: "conv9_2_mbox_conf"
  1627. param {
  1628. lr_mult: 1
  1629. decay_mult: 1
  1630. }
  1631. param {
  1632. lr_mult: 2
  1633. decay_mult: 0
  1634. }
  1635. convolution_param {
  1636. num_output: 8 # 84
  1637. pad: 1
  1638. kernel_size: 3
  1639. stride: 1
  1640. weight_filler {
  1641. type: "xavier"
  1642. }
  1643. bias_filler {
  1644. type: "constant"
  1645. value: 0
  1646. }
  1647. }
  1648. }
  1649. layer {
  1650. name: "conv9_2_mbox_conf_perm"
  1651. type: "Permute"
  1652. bottom: "conv9_2_mbox_conf"
  1653. top: "conv9_2_mbox_conf_perm"
  1654. permute_param {
  1655. order: 0
  1656. order: 2
  1657. order: 3
  1658. order: 1
  1659. }
  1660. }
  1661. layer {
  1662. name: "conv9_2_mbox_conf_flat"
  1663. type: "Flatten"
  1664. bottom: "conv9_2_mbox_conf_perm"
  1665. top: "conv9_2_mbox_conf_flat"
  1666. flatten_param {
  1667. axis: 1
  1668. }
  1669. }
  1670. layer {
  1671. name: "conv9_2_mbox_priorbox"
  1672. type: "PriorBox"
  1673. bottom: "conv9_2_h"
  1674. bottom: "data"
  1675. top: "conv9_2_mbox_priorbox"
  1676. prior_box_param {
  1677. min_size: 264.0
  1678. max_size: 315.0
  1679. aspect_ratio: 2
  1680. flip: true
  1681. clip: false
  1682. variance: 0.1
  1683. variance: 0.1
  1684. variance: 0.2
  1685. variance: 0.2
  1686. step: 300
  1687. offset: 0.5
  1688. }
  1689. }
  1690. layer {
  1691. name: "mbox_loc"
  1692. type: "Concat"
  1693. bottom: "conv4_3_norm_mbox_loc_flat"
  1694. bottom: "fc7_mbox_loc_flat"
  1695. bottom: "conv6_2_mbox_loc_flat"
  1696. bottom: "conv7_2_mbox_loc_flat"
  1697. bottom: "conv8_2_mbox_loc_flat"
  1698. bottom: "conv9_2_mbox_loc_flat"
  1699. top: "mbox_loc"
  1700. concat_param {
  1701. axis: 1
  1702. }
  1703. }
  1704. layer {
  1705. name: "mbox_conf"
  1706. type: "Concat"
  1707. bottom: "conv4_3_norm_mbox_conf_flat"
  1708. bottom: "fc7_mbox_conf_flat"
  1709. bottom: "conv6_2_mbox_conf_flat"
  1710. bottom: "conv7_2_mbox_conf_flat"
  1711. bottom: "conv8_2_mbox_conf_flat"
  1712. bottom: "conv9_2_mbox_conf_flat"
  1713. top: "mbox_conf"
  1714. concat_param {
  1715. axis: 1
  1716. }
  1717. }
  1718. layer {
  1719. name: "mbox_priorbox"
  1720. type: "Concat"
  1721. bottom: "conv4_3_norm_mbox_priorbox"
  1722. bottom: "fc7_mbox_priorbox"
  1723. bottom: "conv6_2_mbox_priorbox"
  1724. bottom: "conv7_2_mbox_priorbox"
  1725. bottom: "conv8_2_mbox_priorbox"
  1726. bottom: "conv9_2_mbox_priorbox"
  1727. top: "mbox_priorbox"
  1728. concat_param {
  1729. axis: 2
  1730. }
  1731. }
  1732. layer {
  1733. name: "mbox_conf_reshape"
  1734. type: "Reshape"
  1735. bottom: "mbox_conf"
  1736. top: "mbox_conf_reshape"
  1737. reshape_param {
  1738. shape {
  1739. dim: 0
  1740. dim: -1
  1741. dim: 2
  1742. }
  1743. }
  1744. }
  1745. layer {
  1746. name: "mbox_conf_softmax"
  1747. type: "Softmax"
  1748. bottom: "mbox_conf_reshape"
  1749. top: "mbox_conf_softmax"
  1750. softmax_param {
  1751. axis: 2
  1752. }
  1753. }
  1754. layer {
  1755. name: "mbox_conf_flatten"
  1756. type: "Flatten"
  1757. bottom: "mbox_conf_softmax"
  1758. top: "mbox_conf_flatten"
  1759. flatten_param {
  1760. axis: 1
  1761. }
  1762. }
  1763. layer {
  1764. name: "detection_out"
  1765. type: "DetectionOutput"
  1766. bottom: "mbox_loc"
  1767. bottom: "mbox_conf_flatten"
  1768. bottom: "mbox_priorbox"
  1769. top: "detection_out"
  1770. include {
  1771. phase: TEST
  1772. }
  1773. detection_output_param {
  1774. num_classes: 2
  1775. share_location: true
  1776. background_label_id: 0
  1777. nms_param {
  1778. nms_threshold: 0.45
  1779. top_k: 400
  1780. }
  1781. code_type: CENTER_SIZE
  1782. keep_top_k: 200
  1783. confidence_threshold: 0.01
  1784. clip: 1
  1785. }
  1786. }