name: "MobileNet-SSD" input: "data" input_shape { dim: 1 dim: 3 dim: 300 dim: 300 } layer { name: "conv0" type: "Convolution" bottom: "data" top: "conv0" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "msra" } } } layer { name: "conv0/bn" type: "BatchNorm" bottom: "conv0" top: "conv0" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv0/scale" type: "Scale" bottom: "conv0" top: "conv0" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv0/relu" type: "ReLU" bottom: "conv0" top: "conv0" } layer { name: "conv1/dw" type: "Convolution" bottom: "conv0" top: "conv1/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 group: 32 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv1/dw/bn" type: "BatchNorm" bottom: "conv1/dw" top: "conv1/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv1/dw/scale" type: "Scale" bottom: "conv1/dw" top: "conv1/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv1/dw/relu" type: "ReLU" bottom: "conv1/dw" top: "conv1/dw" } layer { name: "conv1" type: "Convolution" bottom: "conv1/dw" top: "conv1" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 64 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv1/bn" type: "BatchNorm" bottom: "conv1" top: "conv1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv1/scale" type: "Scale" bottom: "conv1" top: "conv1" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv1/relu" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "conv2/dw" type: "Convolution" bottom: "conv1" top: "conv2/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 2 group: 64 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv2/dw/bn" type: "BatchNorm" bottom: "conv2/dw" top: "conv2/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv2/dw/scale" type: "Scale" bottom: "conv2/dw" top: "conv2/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv2/dw/relu" type: "ReLU" bottom: "conv2/dw" top: "conv2/dw" } layer { name: "conv2" type: "Convolution" bottom: "conv2/dw" top: "conv2" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 128 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv2/bn" type: "BatchNorm" bottom: "conv2" top: "conv2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv2/scale" type: "Scale" bottom: "conv2" top: "conv2" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv2/relu" type: "ReLU" bottom: "conv2" top: "conv2" } layer { name: "conv3/dw" type: "Convolution" bottom: "conv2" top: "conv3/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 group: 128 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv3/dw/bn" type: "BatchNorm" bottom: "conv3/dw" top: "conv3/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv3/dw/scale" type: "Scale" bottom: "conv3/dw" top: "conv3/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv3/dw/relu" type: "ReLU" bottom: "conv3/dw" top: "conv3/dw" } layer { name: "conv3" type: "Convolution" bottom: "conv3/dw" top: "conv3" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 128 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv3/bn" type: "BatchNorm" bottom: "conv3" top: "conv3" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv3/scale" type: "Scale" bottom: "conv3" top: "conv3" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv3/relu" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "conv4/dw" type: "Convolution" bottom: "conv3" top: "conv4/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 2 group: 128 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv4/dw/bn" type: "BatchNorm" bottom: "conv4/dw" top: "conv4/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv4/dw/scale" type: "Scale" bottom: "conv4/dw" top: "conv4/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv4/dw/relu" type: "ReLU" bottom: "conv4/dw" top: "conv4/dw" } layer { name: "conv4" type: "Convolution" bottom: "conv4/dw" top: "conv4" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 256 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv4/bn" type: "BatchNorm" bottom: "conv4" top: "conv4" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv4/scale" type: "Scale" bottom: "conv4" top: "conv4" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv4/relu" type: "ReLU" bottom: "conv4" top: "conv4" } layer { name: "conv5/dw" type: "Convolution" bottom: "conv4" top: "conv5/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 256 bias_term: false pad: 1 kernel_size: 3 group: 256 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv5/dw/bn" type: "BatchNorm" bottom: "conv5/dw" top: "conv5/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv5/dw/scale" type: "Scale" bottom: "conv5/dw" top: "conv5/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv5/dw/relu" type: "ReLU" bottom: "conv5/dw" top: "conv5/dw" } layer { name: "conv5" type: "Convolution" bottom: "conv5/dw" top: "conv5" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 256 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv5/bn" type: "BatchNorm" bottom: "conv5" top: "conv5" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv5/scale" type: "Scale" bottom: "conv5" top: "conv5" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv5/relu" type: "ReLU" bottom: "conv5" top: "conv5" } layer { name: "conv6/dw" type: "Convolution" bottom: "conv5" top: "conv6/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 256 bias_term: false pad: 1 kernel_size: 3 stride: 2 group: 256 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv6/dw/bn" type: "BatchNorm" bottom: "conv6/dw" top: "conv6/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv6/dw/scale" type: "Scale" bottom: "conv6/dw" top: "conv6/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv6/dw/relu" type: "ReLU" bottom: "conv6/dw" top: "conv6/dw" } layer { name: "conv6" type: "Convolution" bottom: "conv6/dw" top: "conv6" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv6/bn" type: "BatchNorm" bottom: "conv6" top: "conv6" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv6/scale" type: "Scale" bottom: "conv6" top: "conv6" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv6/relu" type: "ReLU" bottom: "conv6" top: "conv6" } layer { name: "conv7/dw" type: "Convolution" bottom: "conv6" top: "conv7/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false pad: 1 kernel_size: 3 group: 512 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv7/dw/bn" type: "BatchNorm" bottom: "conv7/dw" top: "conv7/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv7/dw/scale" type: "Scale" bottom: "conv7/dw" top: "conv7/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv7/dw/relu" type: "ReLU" bottom: "conv7/dw" top: "conv7/dw" } layer { name: "conv7" type: "Convolution" bottom: "conv7/dw" top: "conv7" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv7/bn" type: "BatchNorm" bottom: "conv7" top: "conv7" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv7/scale" type: "Scale" bottom: "conv7" top: "conv7" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv7/relu" type: "ReLU" bottom: "conv7" top: "conv7" } layer { name: "conv8/dw" type: "Convolution" bottom: "conv7" top: "conv8/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false pad: 1 kernel_size: 3 group: 512 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv8/dw/bn" type: "BatchNorm" bottom: "conv8/dw" top: "conv8/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv8/dw/scale" type: "Scale" bottom: "conv8/dw" top: "conv8/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv8/dw/relu" type: "ReLU" bottom: "conv8/dw" top: "conv8/dw" } layer { name: "conv8" type: "Convolution" bottom: "conv8/dw" top: "conv8" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv8/bn" type: "BatchNorm" bottom: "conv8" top: "conv8" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv8/scale" type: "Scale" bottom: "conv8" top: "conv8" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv8/relu" type: "ReLU" bottom: "conv8" top: "conv8" } layer { name: "conv9/dw" type: "Convolution" bottom: "conv8" top: "conv9/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false pad: 1 kernel_size: 3 group: 512 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv9/dw/bn" type: "BatchNorm" bottom: "conv9/dw" top: "conv9/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv9/dw/scale" type: "Scale" bottom: "conv9/dw" top: "conv9/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv9/dw/relu" type: "ReLU" bottom: "conv9/dw" top: "conv9/dw" } layer { name: "conv9" type: "Convolution" bottom: "conv9/dw" top: "conv9" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv9/bn" type: "BatchNorm" bottom: "conv9" top: "conv9" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv9/scale" type: "Scale" bottom: "conv9" top: "conv9" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv9/relu" type: "ReLU" bottom: "conv9" top: "conv9" } layer { name: "conv10/dw" type: "Convolution" bottom: "conv9" top: "conv10/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false pad: 1 kernel_size: 3 group: 512 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv10/dw/bn" type: "BatchNorm" bottom: "conv10/dw" top: "conv10/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv10/dw/scale" type: "Scale" bottom: "conv10/dw" top: "conv10/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv10/dw/relu" type: "ReLU" bottom: "conv10/dw" top: "conv10/dw" } layer { name: "conv10" type: "Convolution" bottom: "conv10/dw" top: "conv10" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv10/bn" type: "BatchNorm" bottom: "conv10" top: "conv10" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv10/scale" type: "Scale" bottom: "conv10" top: "conv10" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv10/relu" type: "ReLU" bottom: "conv10" top: "conv10" } layer { name: "conv11/dw" type: "Convolution" bottom: "conv10" top: "conv11/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false pad: 1 kernel_size: 3 group: 512 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv11/dw/bn" type: "BatchNorm" bottom: "conv11/dw" top: "conv11/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv11/dw/scale" type: "Scale" bottom: "conv11/dw" top: "conv11/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv11/dw/relu" type: "ReLU" bottom: "conv11/dw" top: "conv11/dw" } layer { name: "conv11" type: "Convolution" bottom: "conv11/dw" top: "conv11" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv11/bn" type: "BatchNorm" bottom: "conv11" top: "conv11" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv11/scale" type: "Scale" bottom: "conv11" top: "conv11" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv11/relu" type: "ReLU" bottom: "conv11" top: "conv11" } layer { name: "conv12/dw" type: "Convolution" bottom: "conv11" top: "conv12/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false pad: 1 kernel_size: 3 stride: 2 group: 512 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv12/dw/bn" type: "BatchNorm" bottom: "conv12/dw" top: "conv12/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv12/dw/scale" type: "Scale" bottom: "conv12/dw" top: "conv12/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv12/dw/relu" type: "ReLU" bottom: "conv12/dw" top: "conv12/dw" } layer { name: "conv12" type: "Convolution" bottom: "conv12/dw" top: "conv12" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 1024 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv12/bn" type: "BatchNorm" bottom: "conv12" top: "conv12" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv12/scale" type: "Scale" bottom: "conv12" top: "conv12" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv12/relu" type: "ReLU" bottom: "conv12" top: "conv12" } layer { name: "conv13/dw" type: "Convolution" bottom: "conv12" top: "conv13/dw" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 1024 bias_term: false pad: 1 kernel_size: 3 group: 1024 #engine: CAFFE weight_filler { type: "msra" } } } layer { name: "conv13/dw/bn" type: "BatchNorm" bottom: "conv13/dw" top: "conv13/dw" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv13/dw/scale" type: "Scale" bottom: "conv13/dw" top: "conv13/dw" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv13/dw/relu" type: "ReLU" bottom: "conv13/dw" top: "conv13/dw" } layer { name: "conv13" type: "Convolution" bottom: "conv13/dw" top: "conv13" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 1024 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv13/bn" type: "BatchNorm" bottom: "conv13" top: "conv13" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv13/scale" type: "Scale" bottom: "conv13" top: "conv13" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv13/relu" type: "ReLU" bottom: "conv13" top: "conv13" } layer { name: "conv14_1" type: "Convolution" bottom: "conv13" top: "conv14_1" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 256 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv14_1/bn" type: "BatchNorm" bottom: "conv14_1" top: "conv14_1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv14_1/scale" type: "Scale" bottom: "conv14_1" top: "conv14_1" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv14_1/relu" type: "ReLU" bottom: "conv14_1" top: "conv14_1" } layer { name: "conv14_2" type: "Convolution" bottom: "conv14_1" top: "conv14_2" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 512 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "msra" } } } layer { name: "conv14_2/bn" type: "BatchNorm" bottom: "conv14_2" top: "conv14_2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv14_2/scale" type: "Scale" bottom: "conv14_2" top: "conv14_2" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv14_2/relu" type: "ReLU" bottom: "conv14_2" top: "conv14_2" } layer { name: "conv15_1" type: "Convolution" bottom: "conv14_2" top: "conv15_1" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 128 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv15_1/bn" type: "BatchNorm" bottom: "conv15_1" top: "conv15_1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv15_1/scale" type: "Scale" bottom: "conv15_1" top: "conv15_1" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv15_1/relu" type: "ReLU" bottom: "conv15_1" top: "conv15_1" } layer { name: "conv15_2" type: "Convolution" bottom: "conv15_1" top: "conv15_2" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 256 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "msra" } } } layer { name: "conv15_2/bn" type: "BatchNorm" bottom: "conv15_2" top: "conv15_2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv15_2/scale" type: "Scale" bottom: "conv15_2" top: "conv15_2" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv15_2/relu" type: "ReLU" bottom: "conv15_2" top: "conv15_2" } layer { name: "conv16_1" type: "Convolution" bottom: "conv15_2" top: "conv16_1" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 128 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv16_1/bn" type: "BatchNorm" bottom: "conv16_1" top: "conv16_1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv16_1/scale" type: "Scale" bottom: "conv16_1" top: "conv16_1" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv16_1/relu" type: "ReLU" bottom: "conv16_1" top: "conv16_1" } layer { name: "conv16_2" type: "Convolution" bottom: "conv16_1" top: "conv16_2" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 256 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "msra" } } } layer { name: "conv16_2/bn" type: "BatchNorm" bottom: "conv16_2" top: "conv16_2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv16_2/scale" type: "Scale" bottom: "conv16_2" top: "conv16_2" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv16_2/relu" type: "ReLU" bottom: "conv16_2" top: "conv16_2" } layer { name: "conv17_1" type: "Convolution" bottom: "conv16_2" top: "conv17_1" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 64 bias_term: false kernel_size: 1 weight_filler { type: "msra" } } } layer { name: "conv17_1/bn" type: "BatchNorm" bottom: "conv17_1" top: "conv17_1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv17_1/scale" type: "Scale" bottom: "conv17_1" top: "conv17_1" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv17_1/relu" type: "ReLU" bottom: "conv17_1" top: "conv17_1" } layer { name: "conv17_2" type: "Convolution" bottom: "conv17_1" top: "conv17_2" param { lr_mult: 0.1 decay_mult: 0.1 } convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "msra" } } } layer { name: "conv17_2/bn" type: "BatchNorm" bottom: "conv17_2" top: "conv17_2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } } layer { name: "conv17_2/scale" type: "Scale" bottom: "conv17_2" top: "conv17_2" param { lr_mult: 0.1 decay_mult: 0.0 } param { lr_mult: 0.2 decay_mult: 0.0 } scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv17_2/relu" type: "ReLU" bottom: "conv17_2" top: "conv17_2" } layer { name: "conv11_mbox_loc" type: "Convolution" bottom: "conv11" top: "conv11_mbox_loc" param { lr_mult: 0.1 decay_mult: 0.1 } param { lr_mult: 0.2 decay_mult: 0.0 } convolution_param { num_output: 12 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv11_mbox_loc_perm" type: "Permute" bottom: "conv11_mbox_loc" top: "conv11_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv11_mbox_loc_flat" type: "Flatten" bottom: "conv11_mbox_loc_perm" top: "conv11_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv11_mbox_conf" type: "Convolution" bottom: "conv11" top: "conv11_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } param { lr_mult: 2.0 decay_mult: 0.0 } convolution_param { num_output: 63 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv11_mbox_conf_perm" type: "Permute" bottom: "conv11_mbox_conf" top: "conv11_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv11_mbox_conf_flat" type: "Flatten" bottom: "conv11_mbox_conf_perm" top: "conv11_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv11_mbox_priorbox" type: "PriorBox" bottom: "conv11" bottom: "data" top: "conv11_mbox_priorbox" prior_box_param { min_size: 60.0 aspect_ratio: 2.0 flip: true clip: false variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 offset: 0.5 } } layer { name: "conv13_mbox_loc" type: "Convolution" bottom: "conv13" top: "conv13_mbox_loc" param { lr_mult: 0.1 decay_mult: 0.1 } param { lr_mult: 0.2 decay_mult: 0.0 } convolution_param { num_output: 24 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv13_mbox_loc_perm" type: "Permute" bottom: "conv13_mbox_loc" top: "conv13_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv13_mbox_loc_flat" type: "Flatten" bottom: "conv13_mbox_loc_perm" top: "conv13_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv13_mbox_conf" type: "Convolution" bottom: "conv13" top: "conv13_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } param { lr_mult: 2.0 decay_mult: 0.0 } convolution_param { num_output: 126 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv13_mbox_conf_perm" type: "Permute" bottom: "conv13_mbox_conf" top: "conv13_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv13_mbox_conf_flat" type: "Flatten" bottom: "conv13_mbox_conf_perm" top: "conv13_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv13_mbox_priorbox" type: "PriorBox" bottom: "conv13" bottom: "data" top: "conv13_mbox_priorbox" prior_box_param { min_size: 105.0 max_size: 150.0 aspect_ratio: 2.0 aspect_ratio: 3.0 flip: true clip: false variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 offset: 0.5 } } layer { name: "conv14_2_mbox_loc" type: "Convolution" bottom: "conv14_2" top: "conv14_2_mbox_loc" param { lr_mult: 0.1 decay_mult: 0.1 } param { lr_mult: 0.2 decay_mult: 0.0 } convolution_param { num_output: 24 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv14_2_mbox_loc_perm" type: "Permute" bottom: "conv14_2_mbox_loc" top: "conv14_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv14_2_mbox_loc_flat" type: "Flatten" bottom: "conv14_2_mbox_loc_perm" top: "conv14_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv14_2_mbox_conf" type: "Convolution" bottom: "conv14_2" top: "conv14_2_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } param { lr_mult: 2.0 decay_mult: 0.0 } convolution_param { num_output: 126 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv14_2_mbox_conf_perm" type: "Permute" bottom: "conv14_2_mbox_conf" top: "conv14_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv14_2_mbox_conf_flat" type: "Flatten" bottom: "conv14_2_mbox_conf_perm" top: "conv14_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv14_2_mbox_priorbox" type: "PriorBox" bottom: "conv14_2" bottom: "data" top: "conv14_2_mbox_priorbox" prior_box_param { min_size: 150.0 max_size: 195.0 aspect_ratio: 2.0 aspect_ratio: 3.0 flip: true clip: false variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 offset: 0.5 } } layer { name: "conv15_2_mbox_loc" type: "Convolution" bottom: "conv15_2" top: "conv15_2_mbox_loc" param { lr_mult: 0.1 decay_mult: 0.1 } param { lr_mult: 0.2 decay_mult: 0.0 } convolution_param { num_output: 24 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv15_2_mbox_loc_perm" type: "Permute" bottom: "conv15_2_mbox_loc" top: "conv15_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv15_2_mbox_loc_flat" type: "Flatten" bottom: "conv15_2_mbox_loc_perm" top: "conv15_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv15_2_mbox_conf" type: "Convolution" bottom: "conv15_2" top: "conv15_2_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } param { lr_mult: 2.0 decay_mult: 0.0 } convolution_param { num_output: 126 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv15_2_mbox_conf_perm" type: "Permute" bottom: "conv15_2_mbox_conf" top: "conv15_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv15_2_mbox_conf_flat" type: "Flatten" bottom: "conv15_2_mbox_conf_perm" top: "conv15_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv15_2_mbox_priorbox" type: "PriorBox" bottom: "conv15_2" bottom: "data" top: "conv15_2_mbox_priorbox" prior_box_param { min_size: 195.0 max_size: 240.0 aspect_ratio: 2.0 aspect_ratio: 3.0 flip: true clip: false variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 offset: 0.5 } } layer { name: "conv16_2_mbox_loc" type: "Convolution" bottom: "conv16_2" top: "conv16_2_mbox_loc" param { lr_mult: 0.1 decay_mult: 0.1 } param { lr_mult: 0.2 decay_mult: 0.0 } convolution_param { num_output: 24 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv16_2_mbox_loc_perm" type: "Permute" bottom: "conv16_2_mbox_loc" top: "conv16_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv16_2_mbox_loc_flat" type: "Flatten" bottom: "conv16_2_mbox_loc_perm" top: "conv16_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv16_2_mbox_conf" type: "Convolution" bottom: "conv16_2" top: "conv16_2_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } param { lr_mult: 2.0 decay_mult: 0.0 } convolution_param { num_output: 126 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv16_2_mbox_conf_perm" type: "Permute" bottom: "conv16_2_mbox_conf" top: "conv16_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv16_2_mbox_conf_flat" type: "Flatten" bottom: "conv16_2_mbox_conf_perm" top: "conv16_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv16_2_mbox_priorbox" type: "PriorBox" bottom: "conv16_2" bottom: "data" top: "conv16_2_mbox_priorbox" prior_box_param { min_size: 240.0 max_size: 285.0 aspect_ratio: 2.0 aspect_ratio: 3.0 flip: true clip: false variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 offset: 0.5 } } layer { name: "conv17_2_mbox_loc" type: "Convolution" bottom: "conv17_2" top: "conv17_2_mbox_loc" param { lr_mult: 0.1 decay_mult: 0.1 } param { lr_mult: 0.2 decay_mult: 0.0 } convolution_param { num_output: 24 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv17_2_mbox_loc_perm" type: "Permute" bottom: "conv17_2_mbox_loc" top: "conv17_2_mbox_loc_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv17_2_mbox_loc_flat" type: "Flatten" bottom: "conv17_2_mbox_loc_perm" top: "conv17_2_mbox_loc_flat" flatten_param { axis: 1 } } layer { name: "conv17_2_mbox_conf" type: "Convolution" bottom: "conv17_2" top: "conv17_2_mbox_conf" param { lr_mult: 1.0 decay_mult: 1.0 } param { lr_mult: 2.0 decay_mult: 0.0 } convolution_param { num_output: 126 kernel_size: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0.0 } } } layer { name: "conv17_2_mbox_conf_perm" type: "Permute" bottom: "conv17_2_mbox_conf" top: "conv17_2_mbox_conf_perm" permute_param { order: 0 order: 2 order: 3 order: 1 } } layer { name: "conv17_2_mbox_conf_flat" type: "Flatten" bottom: "conv17_2_mbox_conf_perm" top: "conv17_2_mbox_conf_flat" flatten_param { axis: 1 } } layer { name: "conv17_2_mbox_priorbox" type: "PriorBox" bottom: "conv17_2" bottom: "data" top: "conv17_2_mbox_priorbox" prior_box_param { min_size: 285.0 max_size: 300.0 aspect_ratio: 2.0 aspect_ratio: 3.0 flip: true clip: false variance: 0.1 variance: 0.1 variance: 0.2 variance: 0.2 offset: 0.5 } } layer { name: "mbox_loc" type: "Concat" bottom: "conv11_mbox_loc_flat" bottom: "conv13_mbox_loc_flat" bottom: "conv14_2_mbox_loc_flat" bottom: "conv15_2_mbox_loc_flat" bottom: "conv16_2_mbox_loc_flat" bottom: "conv17_2_mbox_loc_flat" top: "mbox_loc" concat_param { axis: 1 } } layer { name: "mbox_conf" type: "Concat" bottom: "conv11_mbox_conf_flat" bottom: "conv13_mbox_conf_flat" bottom: "conv14_2_mbox_conf_flat" bottom: "conv15_2_mbox_conf_flat" bottom: "conv16_2_mbox_conf_flat" bottom: "conv17_2_mbox_conf_flat" top: "mbox_conf" concat_param { axis: 1 } } layer { name: "mbox_priorbox" type: "Concat" bottom: "conv11_mbox_priorbox" bottom: "conv13_mbox_priorbox" bottom: "conv14_2_mbox_priorbox" bottom: "conv15_2_mbox_priorbox" bottom: "conv16_2_mbox_priorbox" bottom: "conv17_2_mbox_priorbox" top: "mbox_priorbox" concat_param { axis: 2 } } layer { name: "mbox_conf_reshape" type: "Reshape" bottom: "mbox_conf" top: "mbox_conf_reshape" reshape_param { shape { dim: 0 dim: -1 dim: 21 } } } layer { name: "mbox_conf_softmax" type: "Softmax" bottom: "mbox_conf_reshape" top: "mbox_conf_softmax" softmax_param { axis: 2 } } layer { name: "mbox_conf_flatten" type: "Flatten" bottom: "mbox_conf_softmax" top: "mbox_conf_flatten" flatten_param { axis: 1 } } layer { name: "detection_out" type: "DetectionOutput" bottom: "mbox_loc" bottom: "mbox_conf_flatten" bottom: "mbox_priorbox" top: "detection_out" include { phase: TEST } detection_output_param { num_classes: 21 share_location: true background_label_id: 0 nms_param { nms_threshold: 0.45 top_k: 100 } code_type: CENTER_SIZE keep_top_k: 100 confidence_threshold: 0.25 } }