123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- # -*- test-case-name: automat._test.test_methodical -*-
-
- import collections
- from functools import wraps
- from itertools import count
-
- from inspect import getfullargspec as getArgsSpec
-
- import attr
-
- from ._core import Transitioner, Automaton
- from ._introspection import preserveName
-
-
- ArgSpec = collections.namedtuple('ArgSpec', ['args', 'varargs', 'varkw',
- 'defaults', 'kwonlyargs',
- 'kwonlydefaults', 'annotations'])
-
-
- def _getArgSpec(func):
- """
- Normalize inspect.ArgSpec across python versions
- and convert mutable attributes to immutable types.
-
- :param Callable func: A function.
- :return: The function's ArgSpec.
- :rtype: ArgSpec
- """
- spec = getArgsSpec(func)
- return ArgSpec(
- args=tuple(spec.args),
- varargs=spec.varargs,
- varkw=spec.varkw,
- defaults=spec.defaults if spec.defaults else (),
- kwonlyargs=tuple(spec.kwonlyargs),
- kwonlydefaults=(
- tuple(spec.kwonlydefaults.items())
- if spec.kwonlydefaults else ()
- ),
- annotations=tuple(spec.annotations.items()),
- )
-
-
- def _getArgNames(spec):
- """
- Get the name of all arguments defined in a function signature.
-
- The name of * and ** arguments is normalized to "*args" and "**kwargs".
-
- :param ArgSpec spec: A function to interrogate for a signature.
- :return: The set of all argument names in `func`s signature.
- :rtype: Set[str]
- """
- return set(
- spec.args
- + spec.kwonlyargs
- + (('*args',) if spec.varargs else ())
- + (('**kwargs',) if spec.varkw else ())
- + spec.annotations
- )
-
-
- def _keywords_only(f):
- """
- Decorate a function so all its arguments must be passed by keyword.
-
- A useful utility for decorators that take arguments so that they don't
- accidentally get passed the thing they're decorating as their first
- argument.
-
- Only works for methods right now.
- """
- @wraps(f)
- def g(self, **kw):
- return f(self, **kw)
- return g
-
-
- @attr.s(frozen=True)
- class MethodicalState(object):
- """
- A state for a L{MethodicalMachine}.
- """
- machine = attr.ib(repr=False)
- method = attr.ib()
- serialized = attr.ib(repr=False)
-
- def upon(self, input, enter=None, outputs=None, collector=list):
- """
- Declare a state transition within the :class:`automat.MethodicalMachine`
- associated with this :class:`automat.MethodicalState`:
- upon the receipt of the `input`, enter the `state`,
- emitting each output in `outputs`.
-
- :param MethodicalInput input: The input triggering a state transition.
- :param MethodicalState enter: The resulting state.
- :param Iterable[MethodicalOutput] outputs: The outputs to be triggered
- as a result of the declared state transition.
- :param Callable collector: The function to be used when collecting
- output return values.
-
- :raises TypeError: if any of the `outputs` signatures do not match
- the `inputs` signature.
- :raises ValueError: if the state transition from `self` via `input`
- has already been defined.
- """
- if enter is None:
- enter = self
- if outputs is None:
- outputs = []
- inputArgs = _getArgNames(input.argSpec)
- for output in outputs:
- outputArgs = _getArgNames(output.argSpec)
- if not outputArgs.issubset(inputArgs):
- raise TypeError(
- "method {input} signature {inputSignature} "
- "does not match output {output} "
- "signature {outputSignature}".format(
- input=input.method.__name__,
- output=output.method.__name__,
- inputSignature=getArgsSpec(input.method),
- outputSignature=getArgsSpec(output.method),
- ))
- self.machine._oneTransition(self, input, enter, outputs, collector)
-
- def _name(self):
- return self.method.__name__
-
-
- def _transitionerFromInstance(oself, symbol, automaton):
- """
- Get a L{Transitioner}
- """
- transitioner = getattr(oself, symbol, None)
- if transitioner is None:
- transitioner = Transitioner(
- automaton,
- automaton.initialState,
- )
- setattr(oself, symbol, transitioner)
- return transitioner
-
-
- def _empty():
- pass
-
- def _docstring():
- """docstring"""
-
- def assertNoCode(inst, attribute, f):
- # The function body must be empty, i.e. "pass" or "return None", which
- # both yield the same bytecode: LOAD_CONST (None), RETURN_VALUE. We also
- # accept functions with only a docstring, which yields slightly different
- # bytecode, because the "None" is put in a different constant slot.
-
- # Unfortunately, this does not catch function bodies that return a
- # constant value, e.g. "return 1", because their code is identical to a
- # "return None". They differ in the contents of their constant table, but
- # checking that would require us to parse the bytecode, find the index
- # being returned, then making sure the table has a None at that index.
-
- if f.__code__.co_code not in (_empty.__code__.co_code,
- _docstring.__code__.co_code):
- raise ValueError("function body must be empty")
-
-
- def _filterArgs(args, kwargs, inputSpec, outputSpec):
- """
- Filter out arguments that were passed to input that output won't accept.
-
- :param tuple args: The *args that input received.
- :param dict kwargs: The **kwargs that input received.
- :param ArgSpec inputSpec: The input's arg spec.
- :param ArgSpec outputSpec: The output's arg spec.
- :return: The args and kwargs that output will accept.
- :rtype: Tuple[tuple, dict]
- """
- named_args = tuple(zip(inputSpec.args[1:], args))
- if outputSpec.varargs:
- # Only return all args if the output accepts *args.
- return_args = args
- else:
- # Filter out arguments that don't appear
- # in the output's method signature.
- return_args = [v for n, v in named_args if n in outputSpec.args]
-
- # Get any of input's default arguments that were not passed.
- passed_arg_names = tuple(kwargs)
- for name, value in named_args:
- passed_arg_names += (name, value)
- defaults = zip(inputSpec.args[::-1], inputSpec.defaults[::-1])
- full_kwargs = {n: v for n, v in defaults if n not in passed_arg_names}
- full_kwargs.update(kwargs)
-
- if outputSpec.varkw:
- # Only pass all kwargs if the output method accepts **kwargs.
- return_kwargs = full_kwargs
- else:
- # Filter out names that the output method does not accept.
- all_accepted_names = outputSpec.args[1:] + outputSpec.kwonlyargs
- return_kwargs = {n: v for n, v in full_kwargs.items()
- if n in all_accepted_names}
-
- return return_args, return_kwargs
-
-
- @attr.s(eq=False, hash=False)
- class MethodicalInput(object):
- """
- An input for a L{MethodicalMachine}.
- """
- automaton = attr.ib(repr=False)
- method = attr.ib(validator=assertNoCode)
- symbol = attr.ib(repr=False)
- collectors = attr.ib(default=attr.Factory(dict), repr=False)
- argSpec = attr.ib(init=False, repr=False)
-
- @argSpec.default
- def _buildArgSpec(self):
- return _getArgSpec(self.method)
-
- def __get__(self, oself, type=None):
- """
- Return a function that takes no arguments and returns values returned
- by output functions produced by the given L{MethodicalInput} in
- C{oself}'s current state.
- """
- transitioner = _transitionerFromInstance(oself, self.symbol,
- self.automaton)
- @preserveName(self.method)
- @wraps(self.method)
- def doInput(*args, **kwargs):
- self.method(oself, *args, **kwargs)
- previousState = transitioner._state
- (outputs, outTracer) = transitioner.transition(self)
- collector = self.collectors[previousState]
- values = []
- for output in outputs:
- if outTracer:
- outTracer(output._name())
- a, k = _filterArgs(args, kwargs, self.argSpec, output.argSpec)
- value = output(oself, *a, **k)
- values.append(value)
- return collector(values)
- return doInput
-
- def _name(self):
- return self.method.__name__
-
-
- @attr.s(frozen=True)
- class MethodicalOutput(object):
- """
- An output for a L{MethodicalMachine}.
- """
- machine = attr.ib(repr=False)
- method = attr.ib()
- argSpec = attr.ib(init=False, repr=False)
-
- @argSpec.default
- def _buildArgSpec(self):
- return _getArgSpec(self.method)
-
- def __get__(self, oself, type=None):
- """
- Outputs are private, so raise an exception when we attempt to get one.
- """
- raise AttributeError(
- "{cls}.{method} is a state-machine output method; "
- "to produce this output, call an input method instead.".format(
- cls=type.__name__,
- method=self.method.__name__
- )
- )
-
-
- def __call__(self, oself, *args, **kwargs):
- """
- Call the underlying method.
- """
- return self.method(oself, *args, **kwargs)
-
- def _name(self):
- return self.method.__name__
-
- @attr.s(eq=False, hash=False)
- class MethodicalTracer(object):
- automaton = attr.ib(repr=False)
- symbol = attr.ib(repr=False)
-
-
- def __get__(self, oself, type=None):
- transitioner = _transitionerFromInstance(oself, self.symbol,
- self.automaton)
- def setTrace(tracer):
- transitioner.setTrace(tracer)
- return setTrace
-
-
-
- counter = count()
- def gensym():
- """
- Create a unique Python identifier.
- """
- return "_symbol_" + str(next(counter))
-
-
-
- class MethodicalMachine(object):
- """
- A :class:`MethodicalMachine` is an interface to an `Automaton`
- that uses methods on a class.
- """
-
- def __init__(self):
- self._automaton = Automaton()
- self._reducers = {}
- self._symbol = gensym()
-
-
- def __get__(self, oself, type=None):
- """
- L{MethodicalMachine} is an implementation detail for setting up
- class-level state; applications should never need to access it on an
- instance.
- """
- if oself is not None:
- raise AttributeError(
- "MethodicalMachine is an implementation detail.")
- return self
-
-
- @_keywords_only
- def state(self, initial=False, terminal=False,
- serialized=None):
- """
- Declare a state, possibly an initial state or a terminal state.
-
- This is a decorator for methods, but it will modify the method so as
- not to be callable any more.
-
- :param bool initial: is this state the initial state?
- Only one state on this :class:`automat.MethodicalMachine`
- may be an initial state; more than one is an error.
-
- :param bool terminal: Is this state a terminal state?
- i.e. a state that the machine can end up in?
- (This is purely informational at this point.)
-
- :param Hashable serialized: a serializable value
- to be used to represent this state to external systems.
- This value should be hashable;
- :py:func:`unicode` is a good type to use.
- """
- def decorator(stateMethod):
- state = MethodicalState(machine=self,
- method=stateMethod,
- serialized=serialized)
- if initial:
- self._automaton.initialState = state
- return state
- return decorator
-
-
- @_keywords_only
- def input(self):
- """
- Declare an input.
-
- This is a decorator for methods.
- """
- def decorator(inputMethod):
- return MethodicalInput(automaton=self._automaton,
- method=inputMethod,
- symbol=self._symbol)
- return decorator
-
-
- @_keywords_only
- def output(self):
- """
- Declare an output.
-
- This is a decorator for methods.
-
- This method will be called when the state machine transitions to this
- state as specified in the decorated `output` method.
- """
- def decorator(outputMethod):
- return MethodicalOutput(machine=self, method=outputMethod)
- return decorator
-
-
- def _oneTransition(self, startState, inputToken, endState, outputTokens,
- collector):
- """
- See L{MethodicalState.upon}.
- """
- # FIXME: tests for all of this (some of it is wrong)
- # if not isinstance(startState, MethodicalState):
- # raise NotImplementedError("start state {} isn't a state"
- # .format(startState))
- # if not isinstance(inputToken, MethodicalInput):
- # raise NotImplementedError("start state {} isn't an input"
- # .format(inputToken))
- # if not isinstance(endState, MethodicalState):
- # raise NotImplementedError("end state {} isn't a state"
- # .format(startState))
- # for output in outputTokens:
- # if not isinstance(endState, MethodicalState):
- # raise NotImplementedError("output state {} isn't a state"
- # .format(endState))
- self._automaton.addTransition(startState, inputToken, endState,
- tuple(outputTokens))
- inputToken.collectors[startState] = collector
-
-
- @_keywords_only
- def serializer(self):
- """
-
- """
- def decorator(decoratee):
- @wraps(decoratee)
- def serialize(oself):
- transitioner = _transitionerFromInstance(oself, self._symbol,
- self._automaton)
- return decoratee(oself, transitioner._state.serialized)
- return serialize
- return decorator
-
- @_keywords_only
- def unserializer(self):
- """
-
- """
- def decorator(decoratee):
- @wraps(decoratee)
- def unserialize(oself, *args, **kwargs):
- state = decoratee(oself, *args, **kwargs)
- mapping = {}
- for eachState in self._automaton.states():
- mapping[eachState.serialized] = eachState
- transitioner = _transitionerFromInstance(
- oself, self._symbol, self._automaton)
- transitioner._state = mapping[state]
- return None # it's on purpose
- return unserialize
- return decorator
-
- @property
- def _setTrace(self):
- return MethodicalTracer(self._automaton, self._symbol)
-
- def asDigraph(self):
- """
- Generate a L{graphviz.Digraph} that represents this machine's
- states and transitions.
-
- @return: L{graphviz.Digraph} object; for more information, please
- see the documentation for
- U{graphviz<https://graphviz.readthedocs.io/>}
-
- """
- from ._visualize import makeDigraph
- return makeDigraph(
- self._automaton,
- stateAsString=lambda state: state.method.__name__,
- inputAsString=lambda input: input.method.__name__,
- outputAsString=lambda output: output.method.__name__,
- )
|