|
|
|
|
|
|
|
|
\vec{U}_1^k = R_1 \cdot \vec{I}_1^k+\frac{d\vec{\psi}_1^k}{dt}+j\omega_k \cdot \vec{\psi}_1^k |
|
|
\vec{U}_1^k = R_1 \cdot \vec{I}_1^k+\frac{d\vec{\psi}_1^k}{dt}+j\omega_k \cdot \vec{\psi}_1^k |
|
|
\end{equation} |
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Ständerspannungsgleichung in Raumzeigerdarstellung |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{U}_1^S = R_1\cdot \vec{I}_1^S + \frac{d\vec{\psi}_1^S}{dt} = R_1\cdot \vec{I}_1^S + i_1\cdot \frac{d\vec{I}_1^S}{dt} + M\cdot \frac{d\vec{I}_2^S}{dt} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
Läuferspannungsgleichung |
|
|
Läuferspannungsgleichung |
|
|
\begin{equation} |
|
|
\begin{equation} |
|
|
\vec{U}_2^k = R_2 \cdot \vec{I}_2^k+\frac{d\vec{\psi}_2^k}{dt}+j(\omega_k -\omega_L)\cdot \vec{\psi}_2^k |
|
|
\vec{U}_2^k = R_2 \cdot \vec{I}_2^k+\frac{d\vec{\psi}_2^k}{dt}+j(\omega_k -\omega_L)\cdot \vec{\psi}_2^k |
|
|
\end{equation} |
|
|
\end{equation} |
|
|
..... nachher geht es weiter |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Läuferspannungsgleichung in Raumzeigerdarstellung |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{U}_2^L = R_2\cdot \vec{I}_2^L + \frac{d\vec{\psi}_2^L}{dt} = 0 |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Läuferspannungsgleichung im Ständerkoordinatensystem |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{U}_2^S = R_2\cdot \frac{\vec{I}_\mu^S - \vec{I}_1^S}{1+\sigma_2} - j\omega_L\cdot M\cdot \vec{I}_\mu^S+M\frac{d\vec{I}_\mu^S}{dt} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
??? |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{I}_1^k = I_\mu(1-j(\omega_L-\omega_K)\cdot T_2)+T_2\cdot \frac{dI_\mu}{dt} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
mit T\textsubscript{2} |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
T_2 = \frac{M\cdot (1+\sigma_2)}{R_2} = \frac{L_2}{R_2} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Längskomponente (flussbildend): Feldbildung folgt mit Zeitkonstante T\textsubscript{2} |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
Re(\vec{I}_1^k) = I_{1d} = I_\mu + T_2 \frac{dI_\mu}{dt} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Querkomponente (drehmomentbildend): Feldbildung folgt unverzögert |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
Im(\vec{I}_1^k) = I_{1q} = (\omega_K - \omega_L)\cdot T_2\cdot I_\mu |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Drehmoment\\ |
|
|
|
|
|
ToDo: Herausfinden welche Formeln relevant sind |
|
|
|
|
|
|
|
|
|
|
|
\colorbox{yellow!60}{Numerische Feldberechnung}\\ |
|
|
|
|
|
|
|
|
|
|
|
Magnetische Feldstärke = Magnetische Erregung |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
H = \frac{I}{l} [\frac{A}{m}] |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Maxwellsche Gleichungen in differentieller Form\\ |
|
|
|
|
|
Durchflutungsgesetz |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
rot \vec{H} = \vec{S} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Induktionsgesetz |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
rot \vec{E} = - \frac{\partial\vec{B}}{\partial t} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Materialgesetz |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{B} = \vec{J} + \mu_0 \cdot \vec{H} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Strömungsfeld für elektrische Leiter |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{S} = k \cdot \vec{E} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Quellenfreiheit |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
div \vec{B} = 0 |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Grundprinzip FEM |
|
|
|
|
|
\begin{itemize} |
|
|
|
|
|
\item Diskretisierung der Feldgebiete (mit Dreiecken 2D oder Tetraeder 3D) |
|
|
|
|
|
\item iterative Lösung |
|
|
|
|
|
\item magnetische Feldberechnung: magnetische Feldenergie unterschreitet vorgegeben Grenzwert |
|
|
|
|
|
\end{itemize} |
|
|
|
|
|
|
|
|
|
|
|
Da die Rotation für alle wirbelfreien Felder = 0 ist gilt:\\ |
|
|
|
|
|
magnetische Flussdichte |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{B} = rot\vec{A} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
kartesische Koordinaten |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
rot \vec{A} = \frac{\partial \vec{A}}{\partial y}\cdot \vec{i} - \frac{\partial \vec{A}}{\partial x}\cdot \vec{j} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Zylinderkoordinaten |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
rot \vec{A} = \frac{1}{r}\frac{\partial \vec{A}}{\partial y}\cdot \vec{e}_r - \frac{\partial \vec{A}}{\partial r}\cdot \vec{e}_\varphi |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Magnetische Vektorpotential/ magnetische Feldstärke\\ |
|
|
|
|
|
kartesische Koordinaten |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{H} = -grad_{\varphi m} = -(\frac{\partial_{\varphi m}}{\partial x}\cdot \vec{i} + \frac{\partial_ {\varphi m}}{\partial y} \cdot \vec{j}) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Zylinderkoordinaten |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\vec{H} = -grad_{\varphi m} = -(\frac{\partial_{\varphi m}}{\partial r}\cdot \vec{e}_r + \frac{1}{r}\frac{\partial_ {\varphi m}}{\partial \varphi} \cdot \vec{e}_\varphi) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Magnetische Energiedichte je Längeneinheit |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\frac{dW_{mag}}{l} = \frac{1}{2} \mu H^2 dA |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Betrag der magnetischen Feldstärke |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
H^2 = (\frac{\partial_{\varphi m}}{\partial x})^2 + (\frac{\partial_{\varphi m}}{\partial y}) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
partielle Ableitungen des Skalarprodukts |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\frac{\partial_{\varphi m}}{\partial x} = \frac{1}{2A}[(y_2-y_3)\varphi_{m1}+(y_3-y_1)\varphi_{m2}+(y_1-y_2)\varphi_{m3}] |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\frac{\partial_{\varphi m}}{\partial y} = \frac{1}{2A}[(x_3-x_2)\varphi_{m1}+(x_1-x_3)\varphi_{m2}+(x_2-x_1)\varphi_{m3}] |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Minimum magnetische Feldenergie |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\frac{\partial W_{mag}/l}{\partial \varphi_m} = 0 |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Mathematisches Konzept der FEM |
|
|
|
|
|
"starke Formulierung" |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
Res = rot \vec{H} - \vec{S} = \frac{1}{\mu} rot rot \vec{A}-\vec{S} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
"schwache Formulierung " ????\\ |
|
|
|
|
|
|
|
|
|
|
|
Flussdichte |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
B = J + \mu_0 H = \mu_0 \mu_r H |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
aus den gemessenen Kennliniepunkten Geradengleichung |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\frac{1}{\mu_r -1} = a^* + b^* \cdot H |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Permeabilität |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\mu_r = f(H) =1+ \frac{1}{a^*+b^*\cdot H} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
induzierte Spannung |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
|u_{ind}|= w \cdot \frac{d\phi}{dt} = \omega \cdot w \cdot \phi |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
magnetische Spannung |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
V_m = H_\delta \cdot \delta |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Strombelag |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
A = |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Grundwelle |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
B_1(\theta) = \mu_0 \frac{2\omega}{\pi\delta}\cdot cos(\theta)\cdot i(t) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Zonungsfaktor |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\xi_{Z,1} = \frac{|\vec{U}_{res}|}{|\vec{U}_1|+|\vec{U}_2|+|\vec{U}_3|} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Sehnungsfaktor |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\xi_{S,1} = sin(\frac{\tau_\omega}{\tau_p}) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Wicklungsfaktor |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
\xi_1 = \xi_{Z,1} \cdot \xi_{S,1} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Wirksame Windungszahl |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
w_1 = N \cdot \xi_1 |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Grundstrombelag |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
a_p(x,t) = A_p \cdot cos(px-\omega_1 t -\varphi_1) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Amplitude der Grundwelle |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
A_p = \frac{3}{\pi}\cdot A = \frac{3\cdot N_1 \xi_p \cdot }{\pi \cdot R} |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Magnetische Spanung über dem Luftspalt |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
V(x,t) = \frac{1}{p} \cdot A_p \cdot R \cdot sin(px-\omega_1 t - \varphi_1) |
|
|
|
|
|
\end{equation} |
|
|
|
|
|
|
|
|
|
|
|
Amplitude B-Feld Grundwelle |
|
|
|
|
|
\begin{equation} |
|
|
|
|
|
B_p = \frac{\mu_0}{\delta^{''}} \frac{3\cdot N_1 \xi_p}{p\cdot \pi} \cdot \sqrt{2} \cdot I_\mu |
|
|
|
|
|
\end{equation} |
|
|
\end{multicols*} |
|
|
\end{multicols*} |
|
|
|
|
|
|
|
|
\begin{multicols*}{2} |
|
|
\begin{multicols*}{2} |