FEM Teil hinzugefügt
This commit is contained in:
parent
0c73f3a169
commit
467e85e155
BIN
ENT4_FS.pdf
BIN
ENT4_FS.pdf
Binary file not shown.
211
ENT4_FS.tex
211
ENT4_FS.tex
@ -416,12 +416,221 @@ hypertexnames=false % Zur korrekten Erstellung der Bookmarks
|
||||
\vec{U}_1^k = R_1 \cdot \vec{I}_1^k+\frac{d\vec{\psi}_1^k}{dt}+j\omega_k \cdot \vec{\psi}_1^k
|
||||
\end{equation}
|
||||
|
||||
Ständerspannungsgleichung in Raumzeigerdarstellung
|
||||
\begin{equation}
|
||||
\vec{U}_1^S = R_1\cdot \vec{I}_1^S + \frac{d\vec{\psi}_1^S}{dt} = R_1\cdot \vec{I}_1^S + i_1\cdot \frac{d\vec{I}_1^S}{dt} + M\cdot \frac{d\vec{I}_2^S}{dt}
|
||||
\end{equation}
|
||||
|
||||
Läuferspannungsgleichung
|
||||
\begin{equation}
|
||||
\vec{U}_2^k = R_2 \cdot \vec{I}_2^k+\frac{d\vec{\psi}_2^k}{dt}+j(\omega_k -\omega_L)\cdot \vec{\psi}_2^k
|
||||
\end{equation}
|
||||
..... nachher geht es weiter
|
||||
|
||||
Läuferspannungsgleichung in Raumzeigerdarstellung
|
||||
\begin{equation}
|
||||
\vec{U}_2^L = R_2\cdot \vec{I}_2^L + \frac{d\vec{\psi}_2^L}{dt} = 0
|
||||
\end{equation}
|
||||
|
||||
Läuferspannungsgleichung im Ständerkoordinatensystem
|
||||
\begin{equation}
|
||||
\vec{U}_2^S = R_2\cdot \frac{\vec{I}_\mu^S - \vec{I}_1^S}{1+\sigma_2} - j\omega_L\cdot M\cdot \vec{I}_\mu^S+M\frac{d\vec{I}_\mu^S}{dt}
|
||||
\end{equation}
|
||||
|
||||
???
|
||||
\begin{equation}
|
||||
\vec{I}_1^k = I_\mu(1-j(\omega_L-\omega_K)\cdot T_2)+T_2\cdot \frac{dI_\mu}{dt}
|
||||
\end{equation}
|
||||
|
||||
mit T\textsubscript{2}
|
||||
\begin{equation}
|
||||
T_2 = \frac{M\cdot (1+\sigma_2)}{R_2} = \frac{L_2}{R_2}
|
||||
\end{equation}
|
||||
|
||||
Längskomponente (flussbildend): Feldbildung folgt mit Zeitkonstante T\textsubscript{2}
|
||||
\begin{equation}
|
||||
Re(\vec{I}_1^k) = I_{1d} = I_\mu + T_2 \frac{dI_\mu}{dt}
|
||||
\end{equation}
|
||||
|
||||
Querkomponente (drehmomentbildend): Feldbildung folgt unverzögert
|
||||
\begin{equation}
|
||||
Im(\vec{I}_1^k) = I_{1q} = (\omega_K - \omega_L)\cdot T_2\cdot I_\mu
|
||||
\end{equation}
|
||||
|
||||
Drehmoment\\
|
||||
ToDo: Herausfinden welche Formeln relevant sind
|
||||
|
||||
\colorbox{yellow!60}{Numerische Feldberechnung}\\
|
||||
|
||||
Magnetische Feldstärke = Magnetische Erregung
|
||||
\begin{equation}
|
||||
H = \frac{I}{l} [\frac{A}{m}]
|
||||
\end{equation}
|
||||
|
||||
Maxwellsche Gleichungen in differentieller Form\\
|
||||
Durchflutungsgesetz
|
||||
\begin{equation}
|
||||
rot \vec{H} = \vec{S}
|
||||
\end{equation}
|
||||
|
||||
Induktionsgesetz
|
||||
\begin{equation}
|
||||
rot \vec{E} = - \frac{\partial\vec{B}}{\partial t}
|
||||
\end{equation}
|
||||
|
||||
Materialgesetz
|
||||
\begin{equation}
|
||||
\vec{B} = \vec{J} + \mu_0 \cdot \vec{H}
|
||||
\end{equation}
|
||||
|
||||
Strömungsfeld für elektrische Leiter
|
||||
\begin{equation}
|
||||
\vec{S} = k \cdot \vec{E}
|
||||
\end{equation}
|
||||
|
||||
Quellenfreiheit
|
||||
\begin{equation}
|
||||
div \vec{B} = 0
|
||||
\end{equation}
|
||||
|
||||
Grundprinzip FEM
|
||||
\begin{itemize}
|
||||
\item Diskretisierung der Feldgebiete (mit Dreiecken 2D oder Tetraeder 3D)
|
||||
\item iterative Lösung
|
||||
\item magnetische Feldberechnung: magnetische Feldenergie unterschreitet vorgegeben Grenzwert
|
||||
\end{itemize}
|
||||
|
||||
Da die Rotation für alle wirbelfreien Felder = 0 ist gilt:\\
|
||||
magnetische Flussdichte
|
||||
\begin{equation}
|
||||
\vec{B} = rot\vec{A}
|
||||
\end{equation}
|
||||
|
||||
kartesische Koordinaten
|
||||
\begin{equation}
|
||||
rot \vec{A} = \frac{\partial \vec{A}}{\partial y}\cdot \vec{i} - \frac{\partial \vec{A}}{\partial x}\cdot \vec{j}
|
||||
\end{equation}
|
||||
|
||||
Zylinderkoordinaten
|
||||
\begin{equation}
|
||||
rot \vec{A} = \frac{1}{r}\frac{\partial \vec{A}}{\partial y}\cdot \vec{e}_r - \frac{\partial \vec{A}}{\partial r}\cdot \vec{e}_\varphi
|
||||
\end{equation}
|
||||
|
||||
Magnetische Vektorpotential/ magnetische Feldstärke\\
|
||||
kartesische Koordinaten
|
||||
\begin{equation}
|
||||
\vec{H} = -grad_{\varphi m} = -(\frac{\partial_{\varphi m}}{\partial x}\cdot \vec{i} + \frac{\partial_ {\varphi m}}{\partial y} \cdot \vec{j})
|
||||
\end{equation}
|
||||
|
||||
Zylinderkoordinaten
|
||||
\begin{equation}
|
||||
\vec{H} = -grad_{\varphi m} = -(\frac{\partial_{\varphi m}}{\partial r}\cdot \vec{e}_r + \frac{1}{r}\frac{\partial_ {\varphi m}}{\partial \varphi} \cdot \vec{e}_\varphi)
|
||||
\end{equation}
|
||||
|
||||
Magnetische Energiedichte je Längeneinheit
|
||||
\begin{equation}
|
||||
\frac{dW_{mag}}{l} = \frac{1}{2} \mu H^2 dA
|
||||
\end{equation}
|
||||
|
||||
Betrag der magnetischen Feldstärke
|
||||
\begin{equation}
|
||||
H^2 = (\frac{\partial_{\varphi m}}{\partial x})^2 + (\frac{\partial_{\varphi m}}{\partial y})
|
||||
\end{equation}
|
||||
|
||||
partielle Ableitungen des Skalarprodukts
|
||||
\begin{equation}
|
||||
\frac{\partial_{\varphi m}}{\partial x} = \frac{1}{2A}[(y_2-y_3)\varphi_{m1}+(y_3-y_1)\varphi_{m2}+(y_1-y_2)\varphi_{m3}]
|
||||
\end{equation}
|
||||
\begin{equation}
|
||||
\frac{\partial_{\varphi m}}{\partial y} = \frac{1}{2A}[(x_3-x_2)\varphi_{m1}+(x_1-x_3)\varphi_{m2}+(x_2-x_1)\varphi_{m3}]
|
||||
\end{equation}
|
||||
|
||||
Minimum magnetische Feldenergie
|
||||
\begin{equation}
|
||||
\frac{\partial W_{mag}/l}{\partial \varphi_m} = 0
|
||||
\end{equation}
|
||||
|
||||
Mathematisches Konzept der FEM
|
||||
"starke Formulierung"
|
||||
\begin{equation}
|
||||
Res = rot \vec{H} - \vec{S} = \frac{1}{\mu} rot rot \vec{A}-\vec{S}
|
||||
\end{equation}
|
||||
|
||||
"schwache Formulierung " ????\\
|
||||
|
||||
Flussdichte
|
||||
\begin{equation}
|
||||
B = J + \mu_0 H = \mu_0 \mu_r H
|
||||
\end{equation}
|
||||
|
||||
aus den gemessenen Kennliniepunkten Geradengleichung
|
||||
\begin{equation}
|
||||
\frac{1}{\mu_r -1} = a^* + b^* \cdot H
|
||||
\end{equation}
|
||||
|
||||
Permeabilität
|
||||
\begin{equation}
|
||||
\mu_r = f(H) =1+ \frac{1}{a^*+b^*\cdot H}
|
||||
\end{equation}
|
||||
|
||||
induzierte Spannung
|
||||
\begin{equation}
|
||||
|u_{ind}|= w \cdot \frac{d\phi}{dt} = \omega \cdot w \cdot \phi
|
||||
\end{equation}
|
||||
|
||||
magnetische Spannung
|
||||
\begin{equation}
|
||||
V_m = H_\delta \cdot \delta
|
||||
\end{equation}
|
||||
|
||||
Strombelag
|
||||
\begin{equation}
|
||||
A =
|
||||
\end{equation}
|
||||
|
||||
Grundwelle
|
||||
\begin{equation}
|
||||
B_1(\theta) = \mu_0 \frac{2\omega}{\pi\delta}\cdot cos(\theta)\cdot i(t)
|
||||
\end{equation}
|
||||
|
||||
Zonungsfaktor
|
||||
\begin{equation}
|
||||
\xi_{Z,1} = \frac{|\vec{U}_{res}|}{|\vec{U}_1|+|\vec{U}_2|+|\vec{U}_3|}
|
||||
\end{equation}
|
||||
|
||||
Sehnungsfaktor
|
||||
\begin{equation}
|
||||
\xi_{S,1} = sin(\frac{\tau_\omega}{\tau_p})
|
||||
\end{equation}
|
||||
|
||||
Wicklungsfaktor
|
||||
\begin{equation}
|
||||
\xi_1 = \xi_{Z,1} \cdot \xi_{S,1}
|
||||
\end{equation}
|
||||
|
||||
Wirksame Windungszahl
|
||||
\begin{equation}
|
||||
w_1 = N \cdot \xi_1
|
||||
\end{equation}
|
||||
|
||||
Grundstrombelag
|
||||
\begin{equation}
|
||||
a_p(x,t) = A_p \cdot cos(px-\omega_1 t -\varphi_1)
|
||||
\end{equation}
|
||||
|
||||
Amplitude der Grundwelle
|
||||
\begin{equation}
|
||||
A_p = \frac{3}{\pi}\cdot A = \frac{3\cdot N_1 \xi_p \cdot }{\pi \cdot R}
|
||||
\end{equation}
|
||||
|
||||
Magnetische Spanung über dem Luftspalt
|
||||
\begin{equation}
|
||||
V(x,t) = \frac{1}{p} \cdot A_p \cdot R \cdot sin(px-\omega_1 t - \varphi_1)
|
||||
\end{equation}
|
||||
|
||||
Amplitude B-Feld Grundwelle
|
||||
\begin{equation}
|
||||
B_p = \frac{\mu_0}{\delta^{''}} \frac{3\cdot N_1 \xi_p}{p\cdot \pi} \cdot \sqrt{2} \cdot I_\mu
|
||||
\end{equation}
|
||||
\end{multicols*}
|
||||
|
||||
\begin{multicols*}{2}
|
||||
|
Loading…
x
Reference in New Issue
Block a user