diff --git a/ENT4_FS.pdf b/ENT4_FS.pdf index 6f181cb..fdb9c94 100644 Binary files a/ENT4_FS.pdf and b/ENT4_FS.pdf differ diff --git a/ENT4_FS.tex b/ENT4_FS.tex index bce005f..c2b3185 100644 --- a/ENT4_FS.tex +++ b/ENT4_FS.tex @@ -282,6 +282,95 @@ hypertexnames=false % Zur korrekten Erstellung der Bookmarks \includegraphics[width= 1.75\columnwidth, angle = 90]{SOK_TEG_FS.pdf} \subheading{Stationär} + ESB von magnetisch gekoppelten Stromkreisen einfügen\\ + Spannungsgleichungen der beiden Stromkreise + \begin{equation} + \underline{U_1} = (R_1+jwL_{1\sigma})\cdot\underline{I_1}+jwL_{1h}\cdot\underline{I_\mu} + \end{equation} + + \begin{equation} + \underline{U_2'} = (R_2'+jwL'_{2\sigma})\cdot\underline{I_2'}+jwL_{2h}\cdot\underline{I_\mu} + \end{equation} + + ESB zweier magnetisch gekoppelter Stromkreise fehlt noch + + \colorbox{yellow!60}{Streuziffer} + \begin{equation} + \sigma_1 = \frac{L_{1\sigma}}{L_{1h}} + \end{equation} + + \colorbox{yellow!60}{Gesamtstreuung} + \begin{equation} + \sigma = 1-\frac{1}{(1+\sigma_1)\cdot(1+\sigma_2)} = 1 - \frac{M^2}{L_1L_2} = 1-\frac{M^2}{M(1+sigma_1)+M(1+\sigma_2)} + \end{equation} + + Strangströme für Feldmaxima + + \begin{equation} + b_u(t) = B \cdot cos(wt)= Re(b_u(t)\cdot e^{j\epsilon_0}) + \end{equation} + + \begin{equation} + b_v(t) = B \cdot cos(wt-\frac{2\pi}{3})= Re(b_v(t)\cdot e^{j\epsilon_0}\cdot e^{j\frac{2\pi}{3}}) + \end{equation} + + \begin{equation} + b_w(t) = B \cdot cos(wt-\frac{4\pi}{3})= Re(b_w(t)\cdot e^{j\epsilon_0}\cdot e^{j\frac{4\pi}{3}}) + \end{equation} + + \begin{equation} + b_res(t) = Re(e^{j\epsilon_0}(b_u(t)+b_v(t)\cdot \underbrace{e^{j\frac{2\pi}{3}}}_{a}+b_w(t)\cdot \underbrace{e^{j\frac{4\pi}{3}}}_{a^2}) + \end{equation} + + Definition des Raumzeigers + \begin{equation} + \vec{B}= \frac{2}{3}(b_u(t)+\underline{a}\cdot b_v(t)+\underline{a^2}\cdot b_w(t)) + \end{equation} + + Raumzeiger von Strömen + \begin{equation} + \vec{I}= \frac{2}{3}(i_u(t)+\underline{a}\cdot i_v(t)+\underline{a^2}\cdot i_w(t)) + \end{equation} + + bei symmetrischen Ströme + \begin{equation} + i_u(t) + i_v(t) + i_w(t) = 0 + \end{equation} + + Stromraumzeiger + \begin{equation} + \vec{I}_1= \frac{2}{3}(i_u(t)+\underbrace{(-\frac{1}{2}+j\frac{\sqrt{3}}{2})}_{e^{j\frac{2\pi}{3}}}\cdot i_v(t)+\underbrace{(-\frac{1}{2}-j\frac{\sqrt{3}}{2})}_{e^{j\frac{4\pi}{3}}} \cdot i_w(t)) + \end{equation} + + Ersatzströme + \begin{equation} + I_{1\alpha} = Re(\vec{I}_1) = i_u(t) + \end{equation} + + \begin{equation} + I_{1\beta} = Im(\vec{I}_1) = \frac{i_v(t)-i_w(t)}{\sqrt{3}} + \end{equation} + + Koordinatentransformation\\ + ständerfeste Koordinaten: Index S + \begin{equation} + \vec{I}_1^S = \hat{I}_1\cdot e^{j\beta_S} = \vec{I}_1^L\cdot e^{j\beta_L} + \end{equation} + + \begin{equation} + I_{1\alpha} = \hat{I}_1\cdot cos\beta_S + \end{equation} + + \begin{equation} + I_{1\beta} = \hat{I}_1\cdot sin\beta_S + \end{equation} + läuferfeste Koordinaten: Index L + \begin{equation} + \vec{I}_1^L = \frac{\hat{I}_1 \cdot e^{j(\beta_S-\beta_L)}}{\vec{I}_1^S\cdot e^{-j\beta_L}} + \end{equation} + + Spannungsgleichung in Raumzeigerdarstellung\\ + .... nachher geht es weiter \end{multicols*}