#include "treppe.h" // #define DEBUG_TIMING /* - dimmer_tick: increment pwm jeden tick, bis anim beendet - return: fsm_pend.anim_beendet */ bool Treppe::dimmer_tick(dimmer_t *dimmer, bool dim_type) { dimmer->pwm += dimmer->delta_pwm; Serial.printf("%.0f", dimmer->pwm); if (dim_type == DIM_STUFEN) { pwmController.setChannelPWM(dimmer->stufe, static_cast(dimmer->pwm)); } else { // DIM_LDR pwmController.setAllChannelsPWM(static_cast(dimmer->pwm)); } dimmer->tick++; if (dimmer->tick < dimmer->ticks) { Serial.print("-"); return false; } Serial.println(""); if (dim_type == DIM_LDR) { Serial.printf("DIM_LDR: start: %d, ziel: %d\n", dimmer->start_pwm, dimmer->ziel_pwm); return true; } else { // DIM_STUFEN Serial.printf("DIM_STUFEN: stufe: %d, start: %d, ziel: %d\n", dimmer->stufe, dimmer->start_pwm, dimmer->ziel_pwm); if (fsm_outputs.laufrichtung == LR_HOCH) { if (dimmer->stufe >= stufen - 1) return true; dimmer->stufe++; } else { // LR_RUNTER if (dimmer->stufe <= 0) return true; dimmer->stufe--; } dimmer->tick = 0; dimmer->pwm = dimmer->start_pwm; } return false; } // startbedingunen für animation void Treppe::start_animation(dimmer_t *dimmer, bool dim_type, uint16_t on_pwm, uint16_t off_pwm) { fsm_pend.anim_beendet = false; if (dim_type == DIM_STUFEN) { if (fsm_outputs.laufrichtung == LR_HOCH) dimmer->stufe = 0; else dimmer->stufe = stufen - 1; dimmer->ticks = param.time_per_stair / INT_TIME; // [ms] } else { // DIM_LDR dimmer->ticks = param.time_ldr / INT_TIME; // [ms] } if (fsm_outputs.dimmrichtung == DR_AUFDIMMEN) { dimmer->start_pwm = off_pwm; dimmer->ziel_pwm = on_pwm; dimmer->delta_pwm = (float)(on_pwm - off_pwm) / (float)dimmer->ticks; } else { dimmer->start_pwm = on_pwm; dimmer->ziel_pwm = off_pwm; dimmer->delta_pwm = (float)(off_pwm - on_pwm) / (float)dimmer->ticks; } dimmer->tick = 0; dimmer->pwm = dimmer->start_pwm; Serial.printf("stufe %d, ticks %d, delta %f, start %d, ziel %d\n", dimmer->stufe, dimmer->ticks, dimmer->delta_pwm, dimmer->start_pwm, dimmer->ziel_pwm); } void Treppe::print_state_on_change() { static FSMTreppeModelClass::ExtU_FSMTreppe_T last_in; static FSMTreppeModelClass::ExtY_FSMTreppe_T last_out; if (fsm_inputs.anim_beendet != last_in.anim_beendet || fsm_inputs.sensor_oben != last_in.sensor_oben || fsm_inputs.sensor_unten != last_in.sensor_unten || fsm_inputs.ldr_schwelle != last_in.ldr_schwelle || fsm_outputs.dimmrichtung != last_out.dimmrichtung || fsm_outputs.laufrichtung != last_out.laufrichtung || fsm_outputs.status != last_out.status) { last_in.anim_beendet = fsm_inputs.anim_beendet; last_in.sensor_oben = fsm_inputs.sensor_oben; last_in.sensor_unten = fsm_inputs.sensor_unten; last_in.ldr_schwelle = fsm_inputs.ldr_schwelle; last_out.dimmrichtung = fsm_outputs.dimmrichtung; last_out.laufrichtung = fsm_outputs.laufrichtung; last_out.status = fsm_outputs.status; Serial.printf("FSM IN: s_u: %d, s_o: %d, a_b: %d, l_s: %d => ", fsm_inputs.sensor_oben, fsm_inputs.sensor_unten, fsm_inputs.anim_beendet, fsm_inputs.ldr_schwelle); Serial.printf("OUT: LR: %d DR: %d ST: %d\n", fsm_outputs.laufrichtung, fsm_outputs.dimmrichtung, fsm_outputs.status); } } void Treppe::overwrite_sensors(bool s_oben, bool s_unten) { fsm_pend.web_ctrl_s_oben = s_oben; fsm_pend.web_ctrl_s_unten = s_unten; } void Treppe::read_sensors() { const bool s_oben = digitalRead(SENSOR_OBEN); const bool s_unten = digitalRead(SENSOR_UNTEN); fsm_pend.sensor_oben = false; fsm_pend.sensor_unten = false; // rising trigger => 1 cycle true ! if (s_oben && !fsm_pend.last_s_oben) { fsm_pend.sensor_oben = true; } if (s_unten && !fsm_pend.last_s_unten) { fsm_pend.sensor_unten = true; } fsm_pend.last_s_oben = s_oben; fsm_pend.last_s_unten = s_unten; // check for manipulation over webserver if (fsm_pend.web_ctrl_s_oben) { fsm_pend.sensor_oben = true; fsm_pend.web_ctrl_s_oben = false; } if (fsm_pend.web_ctrl_s_unten) { fsm_pend.sensor_unten = true; fsm_pend.web_ctrl_s_unten = false; } } float Treppe::read_ldr() { /* Reads Illuminance in Lux FUTURE USE : show current Illuminance on Webserver in order to calibrate Voltage Divider 1 (R13, R14): R13 = 220k, R14 = 82k V(ADC) = V(in1) * R14/(R13+R14) -> V(in1) = V(ADC) * (R13+R14)/R14 V(ADC) = analogRead(A0)/1023.00 -> V(in1) = analogRead(A0)/1023.00 * (R13+R14)/R14 = analogRead(A0) * (R13+R14)/(R14*1023.00) = analogRead(A0) * (220k+82k)/(82k*1023.00) = analogRead(A0) * 0.0036 Voltage Divider 2 (LDR, R1 || (R13+R14)) R1 = 47k, R13+R14 = 302k -> R1||(R13+R14) = 40,67k Vcc/V(in1) = R(LDR) / (R1||(R13+R14)) -> R(LDR) = Vcc/V(in1) * (R1||(R13+R14)) R(LDR) = 3.3V * 40.67k / V(in1) Join formulas: R(LDR) = 3.3V * 40.67k / (0.0036 * analogRead(A0)) = 37280.00/analogRead(A0) ldr_ohm = R(LDR) E(LDR) = 6526.5 * R(LDR)^-2 (see Excel Regression) E(LDR) = 6526.5 / (R(LDR)^2) ldr_value = E(LDR) */ //float ldr_ohm = 37280.00 / analogRead(A0); float voltage = analogRead(A0)*0.0036; float ldr_ohm = 40.57*(3.3-voltage)/voltage; float ldr_value = 6526.6 / (ldr_ohm * ldr_ohm); #ifdef LDRDEBUG Serial.printf("Ohm: %f lux: %f\n", ldr_ohm,ldr_value); #endif return ldr_value; } bool Treppe::check_ldr() { static uint8_t active = 0; #ifdef LDRDEBUG Serial.printf("R(LDR) = %f kOhm %f lux\n", ldr_value, lux); return true; #endif // follow up: averaging over many samples? float ldr = read_ldr(); if (ldr < param.ldr_schwelle) { active = 1; } if (ldr > param.ldr_schwelle + LDR_HYS) { active = 0; } return active; } void Treppe::task() { #ifdef DEBUG_TIMING uint32_t m = micros(); #endif // TODO wenn LDR geändert => idle_pwm_soll anpassen // fsm_pend.ldr_changed = true; fsm_inputs.ldr_schwelle = check_ldr(); #ifdef DEBUG_TIMING Serial.print("1:"); Serial.println(micros() - m); m = micros(); #endif read_sensors(); fsm_inputs.sensor_oben = fsm_pend.sensor_oben; fsm_inputs.sensor_unten = fsm_pend.sensor_unten; fsm_inputs.anim_beendet = fsm_pend.anim_beendet; #ifdef DEBUG_TIMING Serial.print("2:"); Serial.println(micros() - m); m = micros(); #endif FSMTreppe_Obj.setExternalInputs(&fsm_inputs); FSMTreppe_Obj.step(); fsm_outputs = FSMTreppe_Obj.getExternalOutputs(); #ifdef DEBUG_TIMING Serial.print("3:"); Serial.println(micros() - m); m = micros(); #endif print_state_on_change(); #ifdef DEBUG_TIMING Serial.print("4:"); Serial.println(micros() - m); m = micros(); #endif if (fsm_outputs.status == ST_AUFDIMMEN_HOCH || fsm_outputs.status == ST_ABDIMMEN_HOCH || fsm_outputs.status == ST_AUFDIMMEN_RUNTER || fsm_outputs.status == ST_ABDIMMEN_RUNTER) { if (fsm_pend.anim_beendet) start_animation(&dimmer_stufen, DIM_STUFEN, param.active_pwm, idle_pwm_ist); else fsm_pend.anim_beendet = dimmer_tick(&dimmer_stufen, DIM_STUFEN); } else if (fsm_outputs.status == ST_AUFDIMMEN_LDR || fsm_outputs.status == ST_ABDIMMEN_LDR) { if (fsm_pend.anim_beendet) start_animation(&dimmer_ldr, DIM_LDR, idle_pwm_ist, 0); else fsm_pend.anim_beendet = dimmer_tick(&dimmer_ldr, DIM_LDR); } else if (fsm_outputs.status == ST_RUHEZUSTAND) { if (fsm_pend.ldr_changed) { fsm_pend.ldr_changed = false; fsm_outputs.dimmrichtung = DR_AUFDIMMEN; start_animation(&dimmer_ldr, DIM_LDR, idle_pwm_soll, idle_pwm_ist); idle_pwm_ist = idle_pwm_soll; } if (!fsm_pend.anim_beendet) { fsm_pend.anim_beendet = dimmer_tick(&dimmer_ldr, DIM_LDR); } if (param_changed) { param_changed = false; param = param_pend; save_param_to_eeprom(); } } #ifdef DEBUG_TIMING Serial.print("5:"); Serial.println(micros() - m); #endif } void Treppe::setup() { pwmController.resetDevices(); // Deactive PCA9685 Phase Balancer due to LED Flickering // https://github.com/NachtRaveVL/PCA9685-Arduino/issues/15 // see also lib/PCA9685-Arduin/PCA9685.h:204 pwmController.init(PCA9685_PhaseBalancer_None); // pwmController.init(PCA9685_PhaseBalancer_Linear); pwmController.setPWMFrequency(100); // pwmController.setAllChannelsPWM(idle_pwm); // WARNING: before getting Parameters of Flash, make sure plausible parameters // are written in flash! EEPROM.get(EEP_START_ADDR, param); // get Parameters of flash pinMode(13, OUTPUT); pinMode(0, OUTPUT); digitalWrite(13, HIGH); digitalWrite(0, HIGH); pinMode(A0, INPUT); pinMode(SENSOR_OBEN, INPUT); pinMode(SENSOR_UNTEN, INPUT); pinMode(OE, OUTPUT); digitalWrite(OE, 0); Serial.printf("Treppe: stufen=%d\n", stufen); } void Treppe::save_param_to_eeprom() { EEPROM.put(EEP_START_ADDR, param); // copy Parameters so "EEPROM"-section in RAM EEPROM.commit(); // write "EEPROM"-section to flash } void Treppe::set_idle_pwm_max(const uint16_t value, const vorgabe_typ_t vorgabe_typ) { if (vorgabe_typ == VORGABE_PROZENT) { param_pend.idle_pwm_max = param_pend.active_pwm * value / 100; } else if (vorgabe_typ == VORGABE_12BIT) { param_pend.idle_pwm_max = value; } if (param_pend.idle_pwm_max > param_pend.active_pwm) { param_pend.idle_pwm_max = param_pend.active_pwm; } param_changed = true; Serial.printf("Treppe: param_pend.idle_pwm_max=%d\n", param_pend.idle_pwm_max); } void Treppe::set_active_pwm(const uint16_t value, const vorgabe_typ_t vorgabe_typ) { if (vorgabe_typ == VORGABE_PROZENT) { param_pend.active_pwm = 4095 * value / 100; } else if (vorgabe_typ == VORGABE_12BIT) { param_pend.active_pwm = value; } if (param_pend.active_pwm > 4095) { param_pend.idle_pwm_max = 4095; } param_changed = true; Serial.printf("Treppe: param_pend.active_pwm=%d\n", param_pend.active_pwm); } void Treppe::set_time_ldr(const uint16_t value) { param_pend.time_ldr = value; if (param_pend.time_ldr > TIME_MS_MAX) param_pend.time_ldr = TIME_MS_MAX; param_changed = true; Serial.printf("Treppe: time_ldr=%d\n", param_pend.time_ldr); } void Treppe::set_time_per_stair(const uint16_t value) { param_pend.time_per_stair = value; if (param_pend.time_per_stair > TIME_MS_MAX) param_pend.time_per_stair = TIME_MS_MAX; param_changed = true; Serial.printf("Treppe: time_per_stair=%d\n", param_pend.time_per_stair); } void Treppe::set_ldr_schwelle(const uint16_t value, const vorgabe_typ_t vorgabe_typ) { if (vorgabe_typ == VORGABE_PROZENT) { // ?! param_pend.ldr_schwelle = 10 * value / 100; } else if (vorgabe_typ == VORGABE_12BIT) { // param_pend.ldr_schwelle = value; } param_changed = true; Serial.printf("Treppe: ldr_schwelle=%d\n", param_pend.ldr_schwelle); }