#include "treppe.h" uint8_t Treppe::softstart_led(uint8_t led, uint16_t startval, uint16_t stopval){ /* softstart task - get's called at regular intervals (1ms at the moment) - dimms single led (0 - 15, PCA9685 outputs) with linear intervals vom startval to stopval - calculates pwm steps depending on startval, stopval and timeinterval - -> results in constanst speed - returns 1 if led dimming is running - returns 0 if led dimming is finished */ static uint8_t lastled = 255; static float current_pwm = 0; static float stepsize = 1.0; if(led != lastled){ pwmController.setChannelPWM(led, (uint16_t)startval); lastled = led; current_pwm = startval; stepsize = INT_TIME*abs(stopval - startval)/(float)time_per_stair; // only valid at 1ms function call interval return 1; } if(startval > stopval){ current_pwm -= stepsize; } else { current_pwm += stepsize; } // Serial.println((uint16_t)current_pwm); pwmController.setChannelPWM(led, (uint16_t)current_pwm); if(current_pwm > stopval - stepsize && current_pwm < stopval + stepsize){ if(stopval == 0) pwmController.setChannelPWM(led, 0); return 0; } return 1; } void Treppe::ledsequence(){ static int8_t led = 0; static uint16_t brightness = 0; static uint16_t lastbrightness = 0; static uint16_t status = 0; uint16_t status_build = 0; status_build |= direction << 8; status_build |= state; if(status_build != status){ // check if any parameter changed finish = 0; // set state unfinished -> start action if(direction) led = 0; // reset led counter depending of direction else led = stairs-1; if(state){ brightness = active_brightness; // set brightness value depending of on/off lastbrightness = idle_brightness; } else{ brightness = idle_brightness; lastbrightness = active_brightness; } status = status_build; // set parameter memory Serial.printf("----Status Changed! onoff: %d, dir: %d\n", state, direction); } if(!finish){ // finish == 0 -> action pending if(!softstart_led(led,lastbrightness, brightness)){ Serial.printf("one LED finished: led: %d, last: %d, curr %d\n", led, lastbrightness, brightness); if(direction){ led++; if(led >= stairs) finish = 1; } else{ led--; if(led < 0) finish = 1; } } } } void Treppe::rampe() { if(state) { finish = 0; state = 0; // set parameter memory } if(!finish) { if(direction) { // aufwärts if(tick >= ticks_treppe-1) { // ziel erreicht Serial.println("[Treppe] oberster tick !"); finish = 1; return; } tick++; // eins hoch } else { // abwärts if(tick <= 0) { // ziel erreicht Serial.println("[Treppe] unterster tick !"); finish = 1; return; } tick--; // eins runter } stufe = tick / ticks_pro_stufe; float new_pwm = 0.0; if(an_aus) { new_pwm = differenz_pwm_pro_tick * (tick - ticks_pro_stufe*stufe); new_pwm += idle_brightness; if(direction) new_pwm += differenz_pwm_pro_tick; } else { new_pwm = active_brightness - differenz_pwm_pro_tick * (tick - ticks_pro_stufe*stufe); new_pwm += idle_brightness; if(direction) new_pwm -= differenz_pwm_pro_tick; } pwmController.setChannelPWM(stufe, (uint16_t) new_pwm); Serial.printf("tick %04u, led %02d:%02u, pwm %4.1f\n", tick, stufe, (tick - ticks_pro_stufe*stufe), new_pwm ); } } void Treppe::setup(){ Serial.printf("differenz_pwm_pro_tick %f\n", differenz_pwm_pro_tick); pwmController.resetDevices(); // Deactive PCA9685 Phase Balancer due to LED Flickering // https://github.com/NachtRaveVL/PCA9685-Arduino/issues/15 // see also lib/PCA9685-Arduin/PCA9685.h:204 pwmController.init(PCA9685_PhaseBalancer_None); //pwmController.init(PCA9685_PhaseBalancer_Linear); pwmController.setPWMFrequency(100); pwmController.setAllChannelsPWM(idle_brightness); pinMode(A0, INPUT); pinMode(SENSOR1, INPUT); pinMode(SENSOR2, INPUT); pinMode(OE, OUTPUT); digitalWrite(OE, 0); Serial.println("Hello from Treppe"); Serial.print("Treppe: initial parameters: stairs="); Serial.println(stairs); } void Treppe::task(){ if(finish){ direction = switch_direction; state = switch_state; } static uint8_t last_sensor_state[2] = {0,0}; uint8_t current_sensor_state[2] = {0,0}; current_sensor_state[0] = digitalRead(SENSOR1); current_sensor_state[1] = digitalRead(SENSOR2); if(current_sensor_state[0] && !last_sensor_state[0] && state == 0){ setTick(0); setAnAus(1); setDirection(1); setState(1); } if(current_sensor_state[1] && !last_sensor_state[1] && state == 0){ setTick(0); setAnAus(0); setDirection(0); setState(1); } // first switch - off approach, use timer later if(!current_sensor_state[0] && last_sensor_state[0] && state == 1){ setTick(ticks_treppe); setAnAus(1); setDirection(1); setState(0); } if(!current_sensor_state[1] && last_sensor_state[1] && state == 1){ setTick(ticks_treppe); setAnAus(1); setDirection(0); setState(0); } last_sensor_state[0] = current_sensor_state[0]; last_sensor_state[1] = current_sensor_state[1]; ledsequence(); } uint16_t Treppe::setIdle(uint16_t _idle_brightness){ idle_brightness = _idle_brightness; Serial.println("Treppe: idle brightness changed!"); return idle_brightness; } uint16_t Treppe::setActive(uint16_t _active_brightness){ active_brightness = _active_brightness; Serial.println("Treppe: active brightness changed!"); return active_brightness; } uint16_t Treppe::setTime(uint16_t _time_per_stair){ time_per_stair = _time_per_stair; Serial.println("Treppe: time changed!"); return time_per_stair; } void Treppe::setDirection(uint8_t _direction){ switch_direction = _direction; Serial.printf("Treppe: switch_direction=%d!\n", switch_direction); if(finish) Serial.println("apply direction request immediately"); else Serial.println("currently active, dir change afterwards"); // to do: implement state command variable to determine dimm-state } void Treppe::setState(uint8_t _state){ if(state == _state) return; else { switch_state = _state; Serial.printf("Treppe: switch_state=%d!\n", switch_state); if(finish) Serial.println("apply state request immediately"); else Serial.println("currently active, state changes after activity"); } }