ESP8266 Treppenlichtsteuerung mit OTA zum Firmware Upload
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

treppe.cpp 13KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. #include "treppe.h"
  2. // #define DEBUG_TIMING
  3. /*
  4. - dimmer_tick: increment pwm jeden tick, bis anim beendet
  5. - return: fsm_pend.anim_beendet
  6. */
  7. bool Treppe::dimmer_tick(dimmer_t *dimmer, bool dim_type) {
  8. dimmer->pwm += dimmer->delta_pwm;
  9. #ifdef DIMMDEBUG
  10. Serial.printf("%.0f", dimmer->pwm);
  11. #endif
  12. if (dim_type == DIM_STUFEN) {
  13. pwmController.setChannelPWM(dimmer->stufe,
  14. static_cast<uint16_t>(dimmer->pwm));
  15. } else { // DIM_LDR
  16. pwmController.setAllChannelsPWM(static_cast<uint16_t>(dimmer->pwm));
  17. }
  18. dimmer->tick++;
  19. if (dimmer->tick < dimmer->ticks) {
  20. #ifdef DIMMDEBUG
  21. Serial.print("-");
  22. #endif
  23. return false;
  24. }
  25. #ifdef DIMMDEBUG
  26. Serial.println("");
  27. #endif
  28. if (dim_type == DIM_LDR) {
  29. Serial.printf("DIM_LDR: start: %d, ziel: %d\n", dimmer->start_pwm,
  30. dimmer->ziel_pwm);
  31. return true;
  32. } else { // DIM_STUFEN
  33. Serial.printf("DIM_STUFEN: stufe: %d, start: %d, ziel: %d\n",
  34. dimmer->stufe, dimmer->start_pwm, dimmer->ziel_pwm);
  35. if (fsm_outputs.laufrichtung == LR_HOCH) {
  36. if (dimmer->stufe >= stufen - 1)
  37. return true;
  38. dimmer->stufe++;
  39. } else { // LR_RUNTER
  40. if (dimmer->stufe <= 0)
  41. return true;
  42. dimmer->stufe--;
  43. }
  44. dimmer->tick = 0;
  45. dimmer->pwm = dimmer->start_pwm;
  46. }
  47. return false;
  48. }
  49. // startbedingunen für animation
  50. void Treppe::start_animation(dimmer_t *dimmer, bool dim_type, uint16_t on_pwm,
  51. uint16_t off_pwm) {
  52. fsm_pend.anim_beendet = false;
  53. if (dim_type == DIM_STUFEN) {
  54. if (fsm_outputs.laufrichtung == LR_HOCH)
  55. dimmer->stufe = 0;
  56. else
  57. dimmer->stufe = stufen - 1;
  58. dimmer->ticks = param.time_per_stair / INT_TIME; // [ms]
  59. } else { // DIM_LDR
  60. dimmer->ticks = param.time_ldr / INT_TIME; // [ms]
  61. }
  62. if (fsm_outputs.dimmrichtung == DR_AUFDIMMEN) {
  63. dimmer->start_pwm = off_pwm;
  64. dimmer->ziel_pwm = on_pwm;
  65. dimmer->delta_pwm = (float)(on_pwm - off_pwm) / (float)dimmer->ticks;
  66. } else {
  67. dimmer->start_pwm = on_pwm;
  68. dimmer->ziel_pwm = off_pwm;
  69. dimmer->delta_pwm = (float)(off_pwm - on_pwm) / (float)dimmer->ticks;
  70. }
  71. dimmer->tick = 0;
  72. dimmer->pwm = dimmer->start_pwm;
  73. Serial.printf("stufe %d, ticks %d, delta %f, start %d, ziel %d\n",
  74. dimmer->stufe, dimmer->ticks, dimmer->delta_pwm,
  75. dimmer->start_pwm, dimmer->ziel_pwm);
  76. }
  77. void Treppe::print_state_on_change() {
  78. static FSMTreppeModelClass::ExtU_FSMTreppe_T last_in;
  79. static FSMTreppeModelClass::ExtY_FSMTreppe_T last_out;
  80. if (fsm_inputs.anim_beendet != last_in.anim_beendet ||
  81. fsm_inputs.sensor_oben != last_in.sensor_oben ||
  82. fsm_inputs.sensor_unten != last_in.sensor_unten ||
  83. fsm_inputs.ldr_schwelle != last_in.ldr_schwelle ||
  84. fsm_outputs.dimmrichtung != last_out.dimmrichtung ||
  85. fsm_outputs.laufrichtung != last_out.laufrichtung ||
  86. fsm_outputs.status != last_out.status) {
  87. last_in.anim_beendet = fsm_inputs.anim_beendet;
  88. last_in.sensor_oben = fsm_inputs.sensor_oben;
  89. last_in.sensor_unten = fsm_inputs.sensor_unten;
  90. last_in.ldr_schwelle = fsm_inputs.ldr_schwelle;
  91. last_out.dimmrichtung = fsm_outputs.dimmrichtung;
  92. last_out.laufrichtung = fsm_outputs.laufrichtung;
  93. last_out.status = fsm_outputs.status;
  94. Serial.printf("FSM IN: s_u: %d, s_o: %d, a_b: %d, l_s: %d => ",
  95. fsm_inputs.sensor_oben, fsm_inputs.sensor_unten,
  96. fsm_inputs.anim_beendet, fsm_inputs.ldr_schwelle);
  97. Serial.printf("OUT: LR: %d DR: %d ST: %d\n", fsm_outputs.laufrichtung,
  98. fsm_outputs.dimmrichtung, fsm_outputs.status);
  99. }
  100. }
  101. void Treppe::overwrite_sensors(bool s_oben, bool s_unten) {
  102. fsm_pend.web_ctrl_s_oben = s_oben;
  103. fsm_pend.web_ctrl_s_unten = s_unten;
  104. }
  105. void Treppe::read_sensors() {
  106. const bool s_oben = digitalRead(SENSOR_OBEN);
  107. const bool s_unten = digitalRead(SENSOR_UNTEN);
  108. fsm_pend.sensor_oben = false;
  109. fsm_pend.sensor_unten = false;
  110. // rising trigger => 1 cycle true !
  111. if (s_oben && !fsm_pend.last_s_oben) {
  112. fsm_pend.sensor_oben = true;
  113. }
  114. if (s_unten && !fsm_pend.last_s_unten) {
  115. fsm_pend.sensor_unten = true;
  116. }
  117. fsm_pend.last_s_oben = s_oben;
  118. fsm_pend.last_s_unten = s_unten;
  119. // check for manipulation over webserver
  120. if (fsm_pend.web_ctrl_s_oben) {
  121. fsm_pend.sensor_oben = true;
  122. fsm_pend.web_ctrl_s_oben = false;
  123. }
  124. if (fsm_pend.web_ctrl_s_unten) {
  125. fsm_pend.sensor_unten = true;
  126. fsm_pend.web_ctrl_s_unten = false;
  127. }
  128. }
  129. float Treppe::read_ldr() {
  130. /*
  131. Reads Illuminance in Lux
  132. FUTURE USE : show current Illuminance on Webserver in order to calibrate
  133. Voltage Divider 1 (R13, R14):
  134. R13 = 220k, R14 = 82k
  135. V(ADC) = V(in1) * R14/(R13+R14)
  136. -> V(in1) = V(ADC) * (R13+R14)/R14
  137. V(ADC) = analogRead(A0)/1023.00
  138. -> V(in1) = analogRead(A0)/1023.00 * (R13+R14)/R14
  139. = analogRead(A0) * (R13+R14)/(R14*1023.00)
  140. = analogRead(A0) * (220k+82k)/(82k*1023.00)
  141. = analogRead(A0) * 0.0036
  142. Voltage Divider 2 (LDR, R1 || (R13+R14))
  143. R1 = 47k, R13+R14 = 302k -> R1||(R13+R14) = 40,67k
  144. Vcc/V(in1) = R(LDR) / (R1||(R13+R14))
  145. -> R(LDR) = Vcc/V(in1) * (R1||(R13+R14))
  146. R(LDR) = 3.3V * 40.67k / V(in1)
  147. Join formulas:
  148. R(LDR) = 3.3V * 40.67k / (0.0036 * analogRead(A0))
  149. = 37280.00/analogRead(A0)
  150. ldr_ohm = R(LDR)
  151. E(LDR) = 6526.5 * R(LDR)^-2 (see Excel Regression)
  152. E(LDR) = 6526.5 / (R(LDR)^2)
  153. ldr_value = E(LDR)
  154. */
  155. // float ldr_ohm = 37280.00 / analogRead(A0);
  156. float vol_adc = analogRead(A0) * 0.0036;
  157. if(vol_adc > 3.29) // prevent negative values !
  158. vol_adc = 3.29;
  159. float ldr_ohm = 40.67 * (3.3 - vol_adc) / vol_adc;
  160. float ldr_value = 6526.6 / (ldr_ohm * ldr_ohm);
  161. #ifdef LDRDEBUG
  162. Serial.printf("vol_adc: %f Ohm: %f lux: %f Comp: %d\n", vol_adc, ldr_ohm, ldr_value,
  163. param.ldr_schwelle);
  164. #endif
  165. return ldr_value;
  166. }
  167. void Treppe::sample_ldr() {
  168. ldr_average += read_ldr();
  169. ldr_average_cnt++;
  170. if(ldr_average_cnt > LDR_AVERAGE_SAMPLES) {
  171. float ldr_avg = static_cast<float>(ldr_average / LDR_AVERAGE_SAMPLES);
  172. Serial.printf("ldr_avg: %f schwelle: %d\n", ldr_avg, param.ldr_schwelle);
  173. if(check_ldr(ldr_avg)) {
  174. update_soll_pwm_with_ldr(ldr_avg);
  175. }
  176. ldr_average = 0.0;
  177. ldr_average_cnt = 0;
  178. }
  179. }
  180. void Treppe::update_soll_pwm_with_ldr(float ldr_avg) {
  181. // LDR quasi linear :)
  182. /*
  183. soll ldr_average
  184. ---- = ------------
  185. ist ldr_schwelle
  186. */
  187. if(ldr_avg >= param.ldr_schwelle) {
  188. return;
  189. }
  190. idle_pwm_soll = (1 - (ldr_avg / param.ldr_schwelle)) * param.idle_pwm_max;
  191. Serial.printf("Update idle_pwm_soll_with_ldr: %d\n", idle_pwm_soll);
  192. if(idle_pwm_ist != idle_pwm_soll)
  193. fsm_pend.ldr_changed = true;
  194. }
  195. bool Treppe::check_ldr(float ldr_avg) {
  196. static uint8_t active = 0;
  197. if (ldr_avg < param.ldr_schwelle) {
  198. active = 1;
  199. }
  200. if (ldr_avg > param.ldr_schwelle + LDR_HYS) {
  201. active = 0;
  202. }
  203. fsm_inputs.ldr_schwelle = active;
  204. return active;
  205. }
  206. void Treppe::task() {
  207. #ifdef DEBUG_TIMING
  208. uint32_t m = micros();
  209. #endif
  210. sample_ldr();
  211. #ifdef DEBUG_TIMING
  212. Serial.print("1:");
  213. Serial.println(micros() - m);
  214. m = micros();
  215. #endif
  216. read_sensors();
  217. fsm_inputs.sensor_oben = fsm_pend.sensor_oben;
  218. fsm_inputs.sensor_unten = fsm_pend.sensor_unten;
  219. fsm_inputs.anim_beendet = fsm_pend.anim_beendet;
  220. #ifdef DEBUG_TIMING
  221. Serial.print("2:");
  222. Serial.println(micros() - m);
  223. m = micros();
  224. #endif
  225. FSMTreppe_Obj.setExternalInputs(&fsm_inputs);
  226. FSMTreppe_Obj.step();
  227. fsm_outputs = FSMTreppe_Obj.getExternalOutputs();
  228. #ifdef DEBUG_TIMING
  229. Serial.print("3:");
  230. Serial.println(micros() - m);
  231. m = micros();
  232. #endif
  233. print_state_on_change();
  234. #ifdef DEBUG_TIMING
  235. Serial.print("4:");
  236. Serial.println(micros() - m);
  237. m = micros();
  238. #endif
  239. if (fsm_outputs.status == ST_AUFDIMMEN_HOCH ||
  240. fsm_outputs.status == ST_ABDIMMEN_HOCH ||
  241. fsm_outputs.status == ST_AUFDIMMEN_RUNTER ||
  242. fsm_outputs.status == ST_ABDIMMEN_RUNTER) {
  243. if (fsm_pend.anim_beendet)
  244. start_animation(&dimmer_stufen, DIM_STUFEN, param.active_pwm,
  245. idle_pwm_ist);
  246. else
  247. fsm_pend.anim_beendet = dimmer_tick(&dimmer_stufen, DIM_STUFEN);
  248. } else if (fsm_outputs.status == ST_AUFDIMMEN_LDR ||
  249. fsm_outputs.status == ST_ABDIMMEN_LDR) {
  250. if (fsm_pend.anim_beendet) {
  251. start_animation(&dimmer_ldr, DIM_LDR, idle_pwm_soll, 0);
  252. idle_pwm_ist = idle_pwm_soll;
  253. }
  254. else
  255. fsm_pend.anim_beendet = dimmer_tick(&dimmer_ldr, DIM_LDR);
  256. } else if (fsm_outputs.status == ST_RUHEZUSTAND) {
  257. if (fsm_pend.ldr_changed) {
  258. fsm_pend.ldr_changed = false;
  259. if(idle_pwm_soll < idle_pwm_ist) {
  260. fsm_outputs.dimmrichtung = DR_ABDIMMEN;
  261. start_animation(&dimmer_ldr, DIM_LDR, idle_pwm_ist, idle_pwm_soll);
  262. }
  263. else {
  264. fsm_outputs.dimmrichtung = DR_AUFDIMMEN;
  265. start_animation(&dimmer_ldr, DIM_LDR, idle_pwm_soll, idle_pwm_ist);
  266. }
  267. idle_pwm_ist = idle_pwm_soll;
  268. }
  269. if (!fsm_pend.anim_beendet) {
  270. fsm_pend.anim_beendet = dimmer_tick(&dimmer_ldr, DIM_LDR);
  271. }
  272. }
  273. if (fsm_outputs.status == ST_RUHEZUSTAND ||
  274. fsm_outputs.status == ST_INAKTIV_LDR) {
  275. if (param_changed) {
  276. param_changed = false;
  277. param = param_pend;
  278. save_param_to_eeprom();
  279. Serial.printf("Parameter Change applied!\n");
  280. }
  281. }
  282. #ifdef DEBUG_TIMING
  283. Serial.print("5:");
  284. Serial.println(micros() - m);
  285. #endif
  286. }
  287. void Treppe::setup() {
  288. pwmController.resetDevices();
  289. // Deactive PCA9685 Phase Balancer due to LED Flickering
  290. // https://github.com/NachtRaveVL/PCA9685-Arduino/issues/15
  291. // see also lib/PCA9685-Arduin/PCA9685.h:204
  292. pwmController.init(PCA9685_PhaseBalancer_None);
  293. // pwmController.init(PCA9685_PhaseBalancer_Linear);
  294. pwmController.setPWMFrequency(100);
  295. // pwmController.setAllChannelsPWM(idle_pwm);
  296. // WARNING: before getting Parameters of Flash, make sure plausible parameters
  297. // are written in flash!
  298. EEPROM.get(EEP_START_ADDR, param); // get Parameters of flash
  299. pinMode(13, OUTPUT);
  300. pinMode(0, OUTPUT);
  301. digitalWrite(13, HIGH);
  302. digitalWrite(0, HIGH);
  303. pinMode(A0, INPUT);
  304. pinMode(SENSOR_OBEN, INPUT);
  305. pinMode(SENSOR_UNTEN, INPUT);
  306. pinMode(OE, OUTPUT);
  307. digitalWrite(OE, 0);
  308. Serial.printf("Treppe: stufen=%d\n", stufen);
  309. }
  310. void Treppe::save_param_to_eeprom() {
  311. EEPROM.put(EEP_START_ADDR,
  312. param); // copy Parameters so "EEPROM"-section in RAM
  313. EEPROM.commit(); // write "EEPROM"-section to flash
  314. }
  315. void Treppe::set_idle_pwm_max(const uint16_t value,
  316. const vorgabe_typ_t vorgabe_typ) {
  317. if (vorgabe_typ == VORGABE_PROZENT) {
  318. param_pend.idle_pwm_max = param_pend.active_pwm * value / 100;
  319. } else if (vorgabe_typ == VORGABE_12BIT) {
  320. param_pend.idle_pwm_max = value;
  321. }
  322. if (param_pend.idle_pwm_max > param_pend.active_pwm) {
  323. param_pend.idle_pwm_max = param_pend.active_pwm;
  324. }
  325. param_changed = true;
  326. Serial.printf("Treppe: param_pend.idle_pwm_max=%d\n",
  327. param_pend.idle_pwm_max);
  328. }
  329. void Treppe::set_active_pwm(const uint16_t value,
  330. const vorgabe_typ_t vorgabe_typ) {
  331. if (vorgabe_typ == VORGABE_PROZENT) {
  332. param_pend.active_pwm = 4095 * value / 100;
  333. } else if (vorgabe_typ == VORGABE_12BIT) {
  334. param_pend.active_pwm = value;
  335. }
  336. if (param_pend.active_pwm > 4095) {
  337. param_pend.idle_pwm_max = 4095;
  338. }
  339. param_changed = true;
  340. Serial.printf("Treppe: param_pend.active_pwm=%d\n", param_pend.active_pwm);
  341. }
  342. void Treppe::set_time_ldr(const uint16_t value) {
  343. param_pend.time_ldr = value;
  344. if (param_pend.time_ldr > TIME_MS_MAX)
  345. param_pend.time_ldr = TIME_MS_MAX;
  346. param_changed = true;
  347. Serial.printf("Treppe: time_ldr=%d\n", param_pend.time_ldr);
  348. }
  349. void Treppe::set_time_per_stair(const uint16_t value) {
  350. param_pend.time_per_stair = value;
  351. if (param_pend.time_per_stair > TIME_MS_MAX)
  352. param_pend.time_per_stair = TIME_MS_MAX;
  353. param_changed = true;
  354. Serial.printf("Treppe: time_per_stair=%d\n", param_pend.time_per_stair);
  355. }
  356. void Treppe::set_ldr_schwelle(const uint16_t value,
  357. const vorgabe_typ_t vorgabe_typ) {
  358. if (vorgabe_typ == VORGABE_PROZENT) {
  359. // ?!
  360. param_pend.ldr_schwelle = 10 * value / 100;
  361. } else if (vorgabe_typ == VORGABE_12BIT) {
  362. param_pend.ldr_schwelle = value;
  363. }
  364. param_changed = true;
  365. Serial.printf("Treppe: ldr_schwelle=%d\n", param_pend.ldr_schwelle);
  366. }
  367. void Treppe::param_to_json(char *json_str, size_t sz) {
  368. snprintf(json_str, sz, "{\n\
  369. \"time_ldr\": %d,\n\
  370. \"time_per_stair\": %d,\n\
  371. \"idle_pwm_max\": %d,\n\
  372. \"active_pwm\": %d,\n\
  373. \"ldr_schwelle\": %d\n}\n",
  374. param.time_ldr, param.time_per_stair, param.idle_pwm_max,
  375. param.active_pwm, param.ldr_schwelle);
  376. }