merge upstream

This commit is contained in:
Bernhard Schoeffel 2025-08-05 18:50:38 +00:00
commit aeb6f28222
4 changed files with 115 additions and 2 deletions

View File

@ -0,0 +1,32 @@
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
from utils.project_dir import get_path
import re
def read_elektro_into_graph(graph: Graph, filename: str):
pattern = re.compile(r'"([^"]+)";"([^"]+)";(\d+)')
with (open(filename, "r") as file):
for line in file:
m = pattern.match(line)
if m:
start_name = m.group(1)
end_name = m.group(2)
cost = int(m.group(3))
graph.insert_vertex(start_name)
graph.insert_vertex(end_name)
graph.connect(start_name, end_name, cost)
graph.connect(end_name, start_name, cost)
if __name__ == "__main__":
graph = AdjacencyMatrixGraph()
read_elektro_into_graph(graph, get_path("data/elektro.txt"))
parents, cost = graph.mst_prim()
print(f"Kosten nach Prim: {cost}")
for node, parent in parents.items():
if parent is not None:
print(f"{node} - {parent}")
edges, cost = graph.mst_kruskal()
print(f"Kosten nach Kruskal: {cost}")
for start_name, end_name, _ in edges:
print(f"{start_name} - {end_name}")

View File

@ -2,9 +2,12 @@ from collections import deque
from typing import List
from enum import Enum
import graphviz
import math
import heapq
from datetime import datetime
from utils.project_dir import get_path
from utils.priority_queue import PriorityQueue
from vorlesung.L09_mst.disjoint import DisjointValue
class NodeColor(Enum):
@ -205,6 +208,68 @@ class Graph:
relax(vertex, dest, weight)
return distance_map, predecessor_map
def mst_prim(self, start_name: str = None):
""" Compute the minimum spanning tree of the graph using Prim's algorithm. """
distance_map = {} # maps vertices to their current distance from the spanning tree
parent_map = {} # maps vertices to their predecessor in the spanning tree
Vertex.__lt__ = lambda self, other: distance_map[self] < distance_map[other]
queue = []
if start_name is None:
start_name = self.all_vertices()[0].value
# Initialize the maps
for vertex in self.all_vertices():
distance_map[vertex] = 0 if vertex.value == start_name else math.inf
parent_map[vertex] = None
queue.append(vertex)
heapq.heapify(queue) # Convert the list into a heap
# Process the queue
cost = 0 # The cost of the minimum spanning tree
while len(queue) > 0:
vertex = heapq.heappop(queue)
cost += distance_map[vertex] # Add the cost of the edge to the minimum spanning tree
for (dest, w) in self.get_adjacent_vertices_with_weight(vertex.value):
if dest in queue and distance_map[dest] > w:
# Update the distance and parent maps
queue.remove(dest)
distance_map[dest] = w
parent_map[dest] = vertex
queue.append(dest) # Add the vertex back to the queue
heapq.heapify(queue) # Re-heapify the queue
# Return the distance and predecessor maps
return parent_map, cost
def mst_kruskal(self, start_name: str = None):
""" Compute the minimum spanning tree of the graph using Kruskal's algorithm. """
cost = 0
result = []
edges = self.all_edges()
# Create a disjoint set for each vertex
vertex_map = {v.value: DisjointValue(v) for v in self.all_vertices()}
# Sort the edges by weight
edges.sort(key=lambda edge: edge[2])
# Process the edges
for edge in edges:
start_name, end_name, weight = edge
# Check if the edge creates a cycle
if not vertex_map[start_name].same_set(vertex_map[end_name]):
result.append(edge)
vertex_map[start_name].union(vertex_map[end_name])
cost += weight
return result, cost
class AdjacencyListGraph(Graph):
"""A graph implemented as an adjacency list."""
@ -243,8 +308,6 @@ class AdjacencyListGraph(Graph):
return result
class AdjacencyMatrixGraph(Graph):
"""A graph implemented as an adjacency matrix."""
def __init__(self):

View File

View File

@ -0,0 +1,18 @@
class DisjointValue():
def __init__(self, value):
self.value = value
self.parent = None
def canonical(self):
if self.parent:
return self.parent.canonical()
return self
def same_set(self, other):
return self.canonical() == other.canonical()
def union(self, other):
self.canonical().parent = other.canonical()