merge upstream

This commit is contained in:
Bernhard Schoeffel 2025-04-18 12:36:50 +00:00
commit b3d3551994
8 changed files with 390 additions and 5 deletions

View File

@ -5,7 +5,7 @@
<excludeFolder url="file://$MODULE_DIR$/.venv" /> <excludeFolder url="file://$MODULE_DIR$/.venv" />
<excludeFolder url="file://$MODULE_DIR$/venv" /> <excludeFolder url="file://$MODULE_DIR$/venv" />
</content> </content>
<orderEntry type="jdk" jdkName="Python 3.12 (SoSe25)" jdkType="Python SDK" /> <orderEntry type="jdk" jdkName="Python 3.12 (AlgoDatSoSe25)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" /> <orderEntry type="sourceFolder" forTests="false" />
</component> </component>
</module> </module>

View File

@ -0,0 +1,150 @@
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.memory_manager import MemoryManager
from utils.literal import Literal
import random
class PriorityQueue:
def __init__(self, size: Literal):
self.items = MemoryArray(size)
self.heapsize = MemoryCell(0)
def __len__(self):
return self.heapsize.value
def insert(self, item: MemoryCell):
if self.heapsize == self.items.length():
raise Exception("Queue is full")
self.heapsize.set(self.heapsize.succ())
self.items[adjust_index(self.heapsize)].set(item.value)
heapyfy_up(self.items, self.heapsize)
def pop(self) -> MemoryCell | None:
if self.is_empty():
return None
result = MemoryCell(self.items[Literal(0)])
self.heapsize.set(self.heapsize.pred())
if self.heapsize > Literal(1):
swap(self.items, 0, int(self.heapsize))
max_heapyfy(self.items, Literal(1), self.heapsize)
return result
def peek(self) -> MemoryCell | None:
if self.is_empty():
return None
return MemoryCell(self.items[Literal(0)])
def is_empty(self) -> bool:
return self.heapsize == Literal(0)
def __str__(self):
result = "[ "
for i, cell in enumerate(self.items.cells):
if i == int(self.heapsize):
result += "| "
result += str(cell) + " "
result += "]"
return result
def left_child(i: Literal):
return Literal(2 * int(i))
def right_child(i: Literal):
return Literal(2 * int(i) + 1)
def adjust_index(i: Literal):
return i.pred()
def heapyfy_up(z: MemoryArray, i: Literal):
if i == Literal(1):
return
parent = Literal(int(i) // 2)
if z[adjust_index(parent)] >= z[adjust_index(i)]:
return
swap(z, int(i)-1, int(parent)-1)
heapyfy_up(z, parent)
def max_heapyfy(z: MemoryArray, i: Literal, heapsize: Literal):
l = left_child(i)
r = right_child(i)
with MemoryCell(i) as max_value:
if l <= heapsize and z[adjust_index(l)] > z[adjust_index(i)]:
max_value.set(l)
if r <= heapsize and z[adjust_index(r)] > z[adjust_index(max_value)]:
max_value.set(r)
if max_value != i:
swap(z, int(i)-1, int(max_value)-1)
max_heapyfy(z, max_value, heapsize)
def swap(z: MemoryArray, i: int, j: int):
tmp = z[Literal(i)].value
z[Literal(i)] = z[Literal(j)]
z[Literal(j)].set(tmp)
def analyze_complexity_insert(sizes, presorted=False):
"""
Analysiert die Komplexität der Insert-Funktion.
"""
for size in sizes:
MemoryManager().purge() # Speicher zurücksetzen
pq = PriorityQueue(Literal(size))
insert_list = [random.randint(-100, 100) for _ in range(size)]
if presorted:
insert_list.sort()
for insert_value in insert_list[:-1]:
pq.insert(MemoryCell(insert_value))
MemoryManager().reset()
pq.insert(MemoryCell(insert_list[-1]))
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "compares", "writes"])
def analyze_complexity_pop(sizes, presorted=False):
"""
Analysiert die Komplexität der Pop-Funktion.
"""
for size in sizes:
MemoryManager().purge() # Speicher zurücksetzen
pq = PriorityQueue(Literal(size))
insert_list = [random.randint(-100, 100) for _ in range(size)]
if presorted:
insert_list.sort()
for insert_value in insert_list:
pq.insert(MemoryCell(insert_value))
MemoryManager().reset()
pq.pop()
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "compares", "writes"])
if __name__ == '__main__':
length = Literal(10)
pq = PriorityQueue(length)
for i in range(10):
space_left = int(length) - len(pq)
if space_left > 0:
insert_count = random.randint(1, space_left)
insert_sequence = [random.randint(1, int(length)) for _ in range(insert_count)]
print(f"-> {insert_sequence}")
for j in insert_sequence:
pq.insert(MemoryCell(j))
print(f"{pq}")
if not pq.is_empty():
pop_count = random.randint(1, len(pq))
output_sequence = [int(pq.pop()) for _ in range(pop_count)]
print(f"<- {output_sequence}")
print(f"{pq}")
sizes = range(10, 501, 5)
analyze_complexity_insert(sizes, presorted=True)
analyze_complexity_pop(sizes, presorted=True)

View File

@ -0,0 +1,93 @@
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.memory_manager import MemoryManager
from utils.literal import Literal
def quick_sort_stepwise(z: MemoryArray, l: Literal, r: Literal):
if l < r:
q = partition(z, l, r)
yield z
yield from quick_sort_stepwise(z, l, q.pred())
yield from quick_sort_stepwise(z, q.succ(), r)
yield z
def partition(z: MemoryArray, l: Literal, r: Literal):
p = mid_index(z, l, r, Literal((int(l)+int(r))//2))
swap(z, p, r)
with MemoryCell(z[r]) as pivot, MemoryCell(l) as i, MemoryCell(r.pred()) as j:
while i < j:
while z[i] < pivot:
i.set(i.succ())
while j > l and z[j] >= pivot:
j.set(j.pred())
if i < j:
swap(z, int(i), int(j))
i.set(i.succ())
j.set(j.pred())
if i == j and z[i] < pivot:
i.set(i.succ())
if z[i] != pivot:
swap(z, int(i), int(r))
return Literal(i)
def mid_index(z: MemoryArray, i1, i2, i3):
if z[i1] < z[i2] < z[i3]:
return i2
elif z[i3] < z[i2] < z[i1]:
return i2
elif z[i2] < z[i1] < z[i3]:
return i1
elif z[i3] < z[i1] < z[i2]:
return i1
else:
return i3
def quick_sort(z: MemoryArray, l: Literal = None, r: Literal = None):
if l is None:
l = Literal(0)
if r is None:
r = z.length().pred()
sort_generator = quick_sort_stepwise(z, l, r)
while True:
try:
next(sort_generator)
except StopIteration:
break
def sort_file(filename, sort_func):
z = MemoryArray.create_array_from_file(filename)
sort_func(z)
return z
def analyze_complexity(sort_func, sizes, presorted=False):
"""
Analysiert die Komplexität einer Sortierfunktion.
:param sort_func: Die Funktion, die analysiert wird.
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
if presorted:
random_array = MemoryArray.create_sorted_array(size)
else:
random_array = MemoryArray.create_random_array(size, -100, 100)
sort_func(random_array)
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "compares", "writes"])
def swap(z: MemoryArray, i: int, j: int):
tmp = z[Literal(i)].value
z[Literal(i)] = z[Literal(j)]
z[Literal(j)].set(tmp)
if __name__ == '__main__':
sizes = range(10, 101, 5)
analyze_complexity(quick_sort, sizes)
analyze_complexity(quick_sort, sizes, True)

View File

@ -0,0 +1,15 @@
from utils.memory_cell import MemoryCell
class BinaryTreeNode(MemoryCell):
def __init__(self, value):
super().__init__(value)
self.left = None
self.right = None
def __repr__(self):
return f"BinaryTreeNode(value={self.value}, left={self.left}, right={self.right})"
def __str__(self):
return str(self.value)

View File

@ -102,6 +102,13 @@ class MemoryArray:
a.reset_counters() a.reset_counters()
return a return a
def __str__(self):
result = "[ "
for cell in self.cells:
result += str(cell) + ", "
result += "]"
return result
if __name__ == "__main__": if __name__ == "__main__":
import random import random

View File

@ -5,7 +5,6 @@ from utils.memory_range import mrange
from utils.literal import Literal from utils.literal import Literal
def quick_sort_stepwise(z: MemoryArray, l: Literal, r: Literal): def quick_sort_stepwise(z: MemoryArray, l: Literal, r: Literal):
n = z.length()
if l < r: if l < r:
q = partition(z, l, r) q = partition(z, l, r)
yield z yield z
@ -77,6 +76,6 @@ def swap(z: MemoryArray, i: int, j: int):
if __name__ == '__main__': if __name__ == '__main__':
sizes = range(10, 101, 10) sizes = range(10, 101, 5)
analyze_complexity(quick_sort, sizes) #analyze_complexity(quick_sort, sizes)
# analyze_complexity(quick_sort, sizes, True) analyze_complexity(quick_sort, sizes, True)

View File

@ -0,0 +1,60 @@
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.memory_manager import MemoryManager
from utils.memory_range import mrange
from utils.literal import Literal
def count_sort(a: MemoryArray, b: MemoryArray, k: int):
c = MemoryArray(Literal(k + 1))
for i in mrange(Literal(k + 1)):
c[i].set(Literal(0))
for j in mrange(a.length()):
c[a[j]].set(c[a[j]].succ())
for i in mrange(Literal(1), Literal(k + 1)):
c[i].set(int(c[i]) + int(c[i.pred()]))
for j in mrange(a.length().pred(), Literal(-1), Literal(-1)):
b[c[a[j]].pred()].set(a[j])
c[a[j]].set(c[a[j]].pred())
def analyze_complexity(sizes, presorted=False):
"""
Analysiert die Komplexität einer Sortierfunktion.
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
if presorted:
random_array = MemoryArray.create_sorted_array(size, 0, 100)
else:
random_array = MemoryArray.create_random_array(size, 0, 100)
dest_array = MemoryArray(Literal(size))
count_sort(random_array, dest_array, 100)
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "compares", "writes"])
def swap(z: MemoryArray, i: int, j: int):
tmp = z[Literal(i)].value
z[Literal(i)] = z[Literal(j)]
z[Literal(j)].set(tmp)
if __name__ == '__main__':
# Test the count_sort function
a = MemoryArray([2, 5, 3, 0, 2, 3, 0, 3])
b = MemoryArray(Literal(len(a)))
count_sort(a, b, 5)
sizes = range(10, 101, 10)
analyze_complexity(sizes)
# analyze_complexity(sizes, True)

View File

@ -0,0 +1,61 @@
import random
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.memory_manager import MemoryManager
from utils.memory_range import mrange
from utils.literal import Literal
def binary_search(z: MemoryArray, s: MemoryCell, l: Literal = None, r: Literal = None):
"""
Perform a binary search on the sorted array z for the value x.
"""
if l is None:
l = Literal(0)
if r is None:
r = Literal(z.length().pred())
if l > r:
return None
with MemoryCell(l) as m:
m += r
m //= Literal(2)
if s < z[m]:
return binary_search(z, s, l, m.pred())
elif s > z[m]:
return binary_search(z, s, m.succ(), r)
else:
return m
def analyze_complexity(sizes):
"""
Analysiert die Komplexität
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
random_array = MemoryArray.create_sorted_array(size)
search_value = random.randint(-100, 100)
binary_search(random_array, MemoryCell(search_value))
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "compares", "adds"])
if __name__ == "__main__":
# Example usage
arr = MemoryArray([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
search_value = MemoryCell(8)
result = binary_search(arr, search_value)
if result is not None:
print(f"Value {search_value} found at index {result}.")
else:
print(f"Value {search_value} not found in the array.")
sizes = range(1, 1001, 2)
analyze_complexity(sizes)