Compare commits

...

4 Commits

Author SHA1 Message Date
Oliver Hofmann
add4091b5d elektro 2025-06-11 09:14:53 +02:00
Oliver Hofmann
6868e089a4 rendeer maze 2025-06-03 22:48:08 +02:00
Oliver Hofmann
4d581a87de aoc 2025-05-28 07:29:38 +02:00
Oliver Hofmann
9919f791af Höhle 2025-05-27 19:49:38 +02:00
16 changed files with 639 additions and 20 deletions

5
data/aoc2212test.txt Normal file
View File

@ -0,0 +1,5 @@
Sabqponm
abcryxxl
accszExk
acctuvwj
abdefghi

15
data/aoc2416test.txt Normal file
View File

@ -0,0 +1,15 @@
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############

8
data/elektro.txt Normal file
View File

@ -0,0 +1,8 @@
"Höhleneingang";"Ost/West-Passage";5
"Höhleneingang";"Nord/Süd-Passage";3
"Nord/Süd-Passage";"Nebelraum";7
"Steiniger Pfad";"Ost/West-Passage";2
"Ost/West-Passage";"Schwefelgewölbe";4
"Schwefelgewölbe";"Steiniger Pfad";1
"Schatzkammer";"Nebelraum";2
"Steiniger Pfad";"Schatzkammer";6

9
data/labyrinth.txt Normal file
View File

@ -0,0 +1,9 @@
xxxxxxxxxxxxxxxxxxxxx
x x
x S x
x x
x xxxxxxxx x
x x
x x
x A x
xxxxxxxxxxxxxxxxxxxxx

5
data/labyrinth1.txt Normal file
View File

@ -0,0 +1,5 @@
xxxxxAxxxxxxxxx
x xSx
xxxxxxxxxx xx x
x x
xxxxxxxxxxxxxxx

View File

@ -34,27 +34,9 @@ def fs(x: MemoryCell, i: Literal, m: Literal) -> Literal:
return position % m
class TestHashTableOpenAddressing(unittest.TestCase):
def test_hash_function(self):
x = MemoryCell(22)
m = Literal(20)
self.assertEqual(11, h(x, m).value)
def test_probe_function(self):
x = MemoryCell(22)
i = Literal(0)
m = Literal(20)
self.assertEqual(11, f(x, i, m).value)
i = Literal(1)
self.assertEqual(17, f(x, i, m).value)
i = Literal(2)
self.assertEqual(13, f(x, i, m).value)
if __name__ == "__main__":
#unittest.main()
print("*** Aufgabe 3 ***")
size = Literal(20)

View File

@ -0,0 +1,37 @@
import re
from utils.project_dir import get_path
from vorlesung.L08_graphen.graph import Graph, AdjacencyListGraph, AdjacencyMatrixGraph
def read_cave_into_graph(graph: Graph, filename: str):
"""Read a cave description from a file and insert it into the given graph."""
filename = get_path(filename)
with open(filename, "r") as file:
lines = file.readlines()
for line in lines:
# match a line with two node names and an optional direction
m = re.match(r"(^\s*\"(.*)\"\s*([<>]*)\s*\"(.*)\"\s*)", line)
if m:
startnode = m.group(2)
endnode = m.group(4)
opcode = m.group(3)
graph.insert_vertex(startnode)
graph.insert_vertex(endnode)
if '>' in opcode:
graph.connect(startnode, endnode)
if '<' in opcode:
graph.connect(endnode, startnode)
graph = AdjacencyListGraph()
# graph = AdjacencyMatrixGraph()
read_cave_into_graph(graph, "data/hoehle.txt")
_, predecessor_map = graph.bfs('Höhleneingang')
path = graph.path('Schatzkammer', predecessor_map)
print(path)
_, predecessor_map = graph.bfs('Schatzkammer')
path = graph.path('Höhleneingang', predecessor_map)
print(path)
graph.graph("Höhle")

View File

@ -0,0 +1,59 @@
from utils.project_dir import get_path
from vorlesung.L08_graphen.graph import AdjacencyListGraph
DIRECTIONS = [(1,0), (0, 1), (-1, 0), (0, -1)]
class D16Solution:
def __init__(self):
with open(get_path("data/aoc2416.txt"), "r") as file:
self.puzzle = [line.strip() for line in file]
self.cells = set()
self.start = None
self.end = None
def get_cells_start_end(self):
for row in range(len(self.puzzle)):
for col in range(len(self.puzzle[row])):
if self.puzzle[row][col] != '#':
self.cells.add((col, row))
if self.puzzle[row][col] == 'S':
self.start = (col, row)
if self.puzzle[row][col] == 'E':
self.end = (col, row)
def get_label(self, cell, direction):
"""Generate a label for a cell based on its coordinates and direction."""
return f"{cell[0]},{cell[1]}_{direction}"
def create_graph(self):
graph = AdjacencyListGraph()
for cell in self.cells:
for direction in DIRECTIONS:
label = self.get_label(cell, direction)
graph.insert_vertex(label)
for cell in self.cells:
for d, direction in enumerate(DIRECTIONS):
label = self.get_label(cell, direction)
dx, dy = direction
neighbor = (cell[0] + dx, cell[1] + dy)
if neighbor in self.cells:
graph.connect(label, self.get_label(neighbor, direction))
direction_left = DIRECTIONS[(d - 1) % 4]
direction_right = DIRECTIONS[(d + 1) % 4]
graph.connect(label, self.get_label(cell, direction_left), 1000)
graph.connect(label, self.get_label(cell, direction_right), 1000)
return graph
if __name__ == "__main__":
solution = D16Solution()
solution.get_cells_start_end()
graph = solution.create_graph()
start = solution.get_label(solution.start, DIRECTIONS[0])
print(f"Start: {start}")
distance_map, predecessor_map = graph.dijkstra(start)
end_labels = [solution.get_label(solution.end, direction) for direction in DIRECTIONS]
end_vertices = [graph.get_vertex(label) for label in end_labels]
min_weight = min([distance_map[vertex] for vertex in end_vertices])
print(f"Minimum distance to End {solution.end}: {min_weight}")

View File

@ -0,0 +1,32 @@
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
from utils.project_dir import get_path
import re
def read_elektro_into_graph(graph: Graph, filename: str):
pattern = re.compile(r'"([^"]+)";"([^"]+)";(\d+)')
with (open(filename, "r") as file):
for line in file:
m = pattern.match(line)
if m:
start_name = m.group(1)
end_name = m.group(2)
cost = int(m.group(3))
graph.insert_vertex(start_name)
graph.insert_vertex(end_name)
graph.connect(start_name, end_name, cost)
graph.connect(end_name, start_name, cost)
if __name__ == "__main__":
graph = AdjacencyMatrixGraph()
read_elektro_into_graph(graph, get_path("data/elektro.txt"))
parents, cost = graph.mst_prim()
print(f"Kosten nach Prim: {cost}")
for node, parent in parents.items():
if parent is not None:
print(f"{node} - {parent}")
edges, cost = graph.mst_kruskal()
print(f"Kosten nach Kruskal: {cost}")
for start_name, end_name, _ in edges:
print(f"{start_name} - {end_name}")

40
utils/priority_queue.py Normal file
View File

@ -0,0 +1,40 @@
import heapq
class PriorityQueue:
def __init__(self):
self.heap = []
self.entry_finder = {} # map: item -> [priority, item]
self.REMOVED = '<removed>'
self.counter = 0 # unique sequence count to break ties
def add_or_update(self, item, priority):
if item in self.entry_finder:
self.remove(item)
count = self.counter
entry = [priority, count, item]
self.entry_finder[item] = entry
heapq.heappush(self.heap, entry)
self.counter += 1
def remove(self, item):
entry = self.entry_finder.pop(item)
entry[-1] = self.REMOVED # mark as removed
def pop(self):
while self.heap:
priority, count, item = heapq.heappop(self.heap)
if item != self.REMOVED:
del self.entry_finder[item]
return item, priority
return None
if __name__ == "__main__":
pq = PriorityQueue()
pq.add_or_update('task1', 1)
pq.add_or_update('task2', float('inf'))
pq.add_or_update('task3', float('inf'))
print(pq.pop()) # Should print ('task1', 1)
pq.add_or_update('task2', 0) # Update priority of 'task1'
print(pq.pop()) # Should print ('task2', 0)
print(pq.pop()) # Should print ('task3', 3)

View File

@ -1,6 +1,4 @@
from vorlesung.L05_binaere_baeume.bin_tree_node import BinaryTreeNode
from utils.memory_manager import MemoryManager
from utils.memory_array import MemoryArray
from utils.project_dir import get_path
from datetime import datetime
import graphviz

View File

View File

@ -0,0 +1,45 @@
from vorlesung.L08_graphen.graph import Graph, AdjacencyMatrixGraph
from utils.project_dir import get_path
graph = AdjacencyMatrixGraph()
start = ""
end = ""
def read_file(filename: str = "data/aoc2212.txt"):
"""Read a file and return the content as a string."""
def adjust_char(char):
"""Adjust character for comparison."""
if char == 'S':
return 'a'
elif char == 'E':
return 'z'
return char
global start, end
with open(get_path(filename), "r") as file:
quest = file.read().strip().splitlines()
for row, line in enumerate(quest):
for col, char in enumerate(line):
label = f"{row},{col}"
graph.insert_vertex(label)
if char == "S":
start = label
if char == "E":
end = label
for row, line in enumerate(quest):
for col, char in enumerate(line):
for neighbor in [(row - 1, col), (row, col - 1), (row + 1, col), (row, col + 1)]:
if 0 <= neighbor[0] < len(quest) and 0 <= neighbor[1] < len(line):
if ord(adjust_char(quest[neighbor[0]][neighbor[1]])) <= ord(adjust_char(char)) + 1:
label1 = f"{row},{col}"
label2 = f"{neighbor[0]},{neighbor[1]}"
graph.connect(label1, label2)
# Lösung des Adventskalenders 2022, Tag 12
read_file("data/aoc2212test.txt")
graph.graph()
distance_map, predecessor_map = graph.bfs(start)
print(distance_map[graph.get_vertex(end)])
print(graph.path(end, predecessor_map))

View File

@ -0,0 +1,366 @@
from collections import deque
from typing import List
from enum import Enum
import graphviz
import math
import heapq
from datetime import datetime
from utils.project_dir import get_path
from utils.priority_queue import PriorityQueue
from vorlesung.L09_mst.disjoint import DisjointValue
class NodeColor(Enum):
"""Enumeration for node colors in a graph traversal."""
WHITE = 1 # WHITE: not visited
GRAY = 2 # GRAY: visited but not all neighbors visited
BLACK = 3 # BLACK: visited and all neighbors visited
class Vertex:
"""A vertex in a graph."""
def __init__(self, value):
self.value = value
def __str__(self):
return str(self.value)
def __repr__(self):
return f"Vertex({self.value})"
class Graph:
"""A graph."""
def insert_vertex(self, name: str):
raise NotImplementedError("Please implement this method in subclass")
def connect(self, name1: str, name2: str, weight: float = 1):
raise NotImplementedError("Please implement this method in subclass")
def all_vertices(self) -> List[Vertex]:
raise NotImplementedError("Please implement this method in subclass")
def get_vertex(self, name: str) -> Vertex:
raise NotImplementedError("Please implement this method in subclass")
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
raise NotImplementedError("Please implement this method in subclass")
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
raise NotImplementedError("Please implement this method in subclass")
def all_edges(self) -> List[tuple[str, str, float]]:
raise NotImplementedError("Please implement this method in subclass")
def bfs(self, start_name: str):
"""
Perform a breadth-first search starting at the given vertex.
:param start_name: the name of the vertex to start at
:return: a tuple of two dictionaries, the first mapping vertices to distances from the start vertex,
the second mapping vertices to their predecessors in the traversal tree
"""
color_map = {} # maps vertices to their color
distance_map = {} # maps vertices to their distance from the start vertex
predecessor_map = {} # maps vertices to their predecessor in the traversal tree
# Initialize the maps
for vertex in self.all_vertices():
color_map[vertex] = NodeColor.WHITE
distance_map[vertex] = None
predecessor_map[vertex] = None
# Start at the given vertex
start_node = self.get_vertex(start_name)
color_map[start_node] = NodeColor.GRAY
distance_map[start_node] = 0
# Initialize the queue with the start vertex
queue = deque()
queue.append(start_node)
# Process the queue
while len(queue) > 0:
vertex = queue.popleft()
for dest in self.get_adjacent_vertices(vertex.value):
if color_map[dest] == NodeColor.WHITE:
color_map[dest] = NodeColor.GRAY
distance_map[dest] = distance_map[vertex] + 1
predecessor_map[dest] = vertex
queue.append(dest)
color_map[vertex] = NodeColor.BLACK
# Return the distance and predecessor maps
return distance_map, predecessor_map
def dfs(self):
"""
Perform a depth-first search starting at the first vertex.
:return: a tuple of two dictionaries, the first mapping vertices to distances from the start vertex,
the second mapping vertices to their predecessors in the traversal tree
"""
color_map : dict[Vertex, NodeColor]= {}
enter_map : dict[Vertex, int] = {}
leave_map : dict[Vertex, int] = {}
predecessor_map : dict[Vertex, Vertex | None] = {}
white_vertices = set(self.all_vertices())
time_counter = 0
def dfs_visit(vertex):
nonlocal time_counter
color_map[vertex] = NodeColor.GRAY
white_vertices.remove(vertex)
time_counter += 1
enter_map[vertex] = time_counter
for dest in self.get_adjacent_vertices(vertex.value):
if color_map[dest] == NodeColor.WHITE:
predecessor_map[dest] = vertex
dfs_visit(dest)
color_map[vertex] = NodeColor.BLACK
time_counter += 1
leave_map[vertex] = time_counter
# Initialize the maps
for vertex in self.all_vertices():
color_map[vertex] = NodeColor.WHITE
predecessor_map[vertex] = None
while white_vertices:
v = white_vertices.pop()
dfs_visit(v)
return enter_map, leave_map, predecessor_map
def path(self, destination, map):
"""
Compute the path from the start vertex to the given destination vertex.
The map parameter is the predecessor map
"""
path = []
destination_node = self.get_vertex(destination)
while destination_node is not None:
path.insert(0, destination_node.value)
destination_node = map[destination_node]
return path
def graph(self, filename: str = "Graph"):
dot = graphviz.Digraph( name=filename,
node_attr={"fontname": "Arial"},
format="pdf" )
for vertex in self.all_vertices():
dot.node(str(id(vertex)), label=str(vertex.value))
for edge in self.all_edges():
dot.edge(str(id(self.get_vertex(edge[0]))), str(id(self.get_vertex(edge[1]))), label=str(edge[2]))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{filename}_{timestamp}.gv"
filename = get_path(filename)
dot.render(filename)
def dijkstra(self, start_name: str) -> tuple[dict[Vertex, float], dict[Vertex, Vertex | None]]:
"""
Führt den Dijkstra-Algorithmus für kürzeste Pfade durch, implementiert mit Knotenfarben.
Args:
start_name: Name des Startknotens
Returns:
Ein Tupel aus zwei Dictionaries:
- distance_map: Abbildung von Knoten auf ihre kürzeste Distanz vom Startknoten
- predecessor_map: Abbildung von Knoten auf ihre Vorgänger im kürzesten Pfad
"""
def relax(vertex, dest, weight):
"""
Entspannt die Kante zwischen vertex und dest.
Aktualisiert die Distanz und den Vorgänger, wenn ein kürzerer Pfad gefunden wird.
"""
if distance_map[vertex] + weight < distance_map[dest]:
distance_map[dest] = distance_map[vertex] + weight
predecessor_map[dest] = vertex
queue.add_or_update(dest, distance_map[dest])
# Initialisierung der Maps
distance_map = {} # Speichert kürzeste Distanzen
predecessor_map = {} # Speichert Vorgänger
# Initialisiere alle Knoten
queue = PriorityQueue()
for vertex in self.all_vertices():
distance_map[vertex] = float('inf') # Initiale Distanz unendlich
predecessor_map[vertex] = None # Initialer Vorgänger None
queue.add_or_update(vertex, distance_map[vertex]) # Füge Knoten zur Prioritätswarteschlange hinzu
# Setze Startknoten
start_node = self.get_vertex(start_name)
distance_map[start_node] = 0
queue.add_or_update(start_node, distance_map[start_node])
while True:
entry = queue.pop()
if entry is None:
break
vertex = entry[0]
for dest, weight in self.get_adjacent_vertices_with_weight(vertex.value):
relax(vertex, dest, weight)
return distance_map, predecessor_map
def mst_prim(self, start_name: str = None):
""" Compute the minimum spanning tree of the graph using Prim's algorithm. """
distance_map = {} # maps vertices to their current distance from the spanning tree
parent_map = {} # maps vertices to their predecessor in the spanning tree
Vertex.__lt__ = lambda self, other: distance_map[self] < distance_map[other]
queue = []
if start_name is None:
start_name = self.all_vertices()[0].value
# Initialize the maps
for vertex in self.all_vertices():
distance_map[vertex] = 0 if vertex.value == start_name else math.inf
parent_map[vertex] = None
queue.append(vertex)
heapq.heapify(queue) # Convert the list into a heap
# Process the queue
cost = 0 # The cost of the minimum spanning tree
while len(queue) > 0:
vertex = heapq.heappop(queue)
cost += distance_map[vertex] # Add the cost of the edge to the minimum spanning tree
for (dest, w) in self.get_adjacent_vertices_with_weight(vertex.value):
if dest in queue and distance_map[dest] > w:
# Update the distance and parent maps
queue.remove(dest)
distance_map[dest] = w
parent_map[dest] = vertex
queue.append(dest) # Add the vertex back to the queue
heapq.heapify(queue) # Re-heapify the queue
# Return the distance and predecessor maps
return parent_map, cost
def mst_kruskal(self, start_name: str = None):
""" Compute the minimum spanning tree of the graph using Kruskal's algorithm. """
cost = 0
result = []
edges = self.all_edges()
# Create a disjoint set for each vertex
vertex_map = {v.value: DisjointValue(v) for v in self.all_vertices()}
# Sort the edges by weight
edges.sort(key=lambda edge: edge[2])
# Process the edges
for edge in edges:
start_name, end_name, weight = edge
# Check if the edge creates a cycle
if not vertex_map[start_name].same_set(vertex_map[end_name]):
result.append(edge)
vertex_map[start_name].union(vertex_map[end_name])
cost += weight
return result, cost
class AdjacencyListGraph(Graph):
"""A graph implemented as an adjacency list."""
def __init__(self):
self.adjacency_map = {} # maps vertex names to lists of adjacent vertices
self.vertex_map = {} # maps vertex names to vertices
def insert_vertex(self, name: str):
if name not in self.vertex_map:
self.vertex_map[name] = Vertex(name)
if name not in self.adjacency_map:
self.adjacency_map[name] = []
def connect(self, name1: str, name2: str, weight: float = 1):
adjacency_list = self.adjacency_map[name1]
dest = self.vertex_map[name2]
adjacency_list.append((dest, weight))
def all_vertices(self) -> List[Vertex]:
return list(self.vertex_map.values())
def get_vertex(self, name: str) -> Vertex:
return self.vertex_map[name]
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
return list(map(lambda x: x[0], self.adjacency_map[name]))
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
return self.adjacency_map[name]
def all_edges(self) -> List[tuple[str, str, float]]:
result = []
for name in self.adjacency_map:
for (dest, weight) in self.adjacency_map[name]:
result.append((name, dest.value, weight))
return result
class AdjacencyMatrixGraph(Graph):
"""A graph implemented as an adjacency matrix."""
def __init__(self):
self.index_map = {} # maps vertex names to indices
self.vertex_list = [] # list of vertices
self.adjacency_matrix = [] # adjacency matrix
def insert_vertex(self, name: str):
if name not in self.index_map:
self.index_map[name] = len(self.vertex_list)
self.vertex_list.append(Vertex(name))
for row in self.adjacency_matrix: # add a new column to each row
row.append(None)
self.adjacency_matrix.append([None] * len(self.vertex_list)) # add a new row
def connect(self, name1: str, name2: str, weight: float = 1):
index1 = self.index_map[name1]
index2 = self.index_map[name2]
self.adjacency_matrix[index1][index2] = weight
def all_vertices(self) -> List[Vertex]:
return self.vertex_list
def get_vertex(self, name: str) -> Vertex:
index = self.index_map[name]
return self.vertex_list[index]
def get_adjacent_vertices(self, name: str) -> List[Vertex]:
index = self.index_map[name]
result = []
for i in range(len(self.vertex_list)):
if self.adjacency_matrix[index][i] is not None:
name = self.vertex_list[i].value
result.append(self.get_vertex(name))
return result
def get_adjacent_vertices_with_weight(self, name: str) -> List[tuple[Vertex, float]]:
index = self.index_map[name]
result = []
for i in range(len(self.vertex_list)):
if self.adjacency_matrix[index][i] is not None:
name = self.vertex_list[i].value
result.append((self.get_vertex(name), self.adjacency_matrix[index][i]))
return result
def all_edges(self) -> List[tuple[str, str, float]]:
result = []
for i in range(len(self.vertex_list)):
for j in range(len(self.vertex_list)):
if self.adjacency_matrix[i][j] is not None:
result.append((self.vertex_list[i].value, self.vertex_list[j].value, self.adjacency_matrix[i][j]))
return result

View File

View File

@ -0,0 +1,18 @@
class DisjointValue():
def __init__(self, value):
self.value = value
self.parent = None
def canonical(self):
if self.parent:
return self.parent.canonical()
return self
def same_set(self, other):
return self.canonical() == other.canonical()
def union(self, other):
self.canonical().parent = other.canonical()