Compare commits

...

7 Commits

3 changed files with 360 additions and 2 deletions

View File

@ -2,6 +2,16 @@ import logging
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
# logging.basicConfig(level=logging.DEBUG) # logging.basicConfig(level=logging.DEBUG)
import time
def timeMS(func, *args, **kwargs):
startTime = time.perf_counter()
result = func(*args, **kwargs)
endTime = time.perf_counter()
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
print(f"{func.__name__} took {elapsedMS:.2f} ms")
return result
from utils.memory_array import MemoryArray from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell from utils.memory_cell import MemoryCell
from utils.literal import Literal from utils.literal import Literal
@ -111,5 +121,5 @@ if __name__ == '__main__':
print(filename) print(filename)
toSort = MemoryArray.create_array_from_file(filename) toSort = MemoryArray.create_array_from_file(filename)
sorted = MemoryArray([-1] * toSort.length().get()) sorted = MemoryArray([-1] * toSort.length().get())
mergeSort(toSort, sorted) timeMS(mergeSort, toSort, sorted)
print(sorted) # print(sorted)

190
schoeffelbe/pr03.py Normal file
View File

@ -0,0 +1,190 @@
import logging
logger = logging.getLogger(__name__)
# logging.basicConfig(level=logging.DEBUG)
import time
def timeMS(func, *args, **kwargs):
startTime = time.perf_counter()
result = func(*args, **kwargs)
endTime = time.perf_counter()
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
print(f"{func.__name__} took {elapsedMS:.2f} ms")
return result
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.literal import Literal
from utils.constants import MIN_VALUE
from utils.memory_manager import MemoryManager
from utils.memory_range import mrange
def example():
initial = [6, 5, 3, 8, 1, 7, 2, 4]
# initial = [-6, -5, -3, -8, 1, 7, 2, 4]
toSort = MemoryArray(initial)
quickSortIterative(toSort, Literal(0), toSort.length().pred())
logger.debug(f"sorted {toSort} vs initial {initial}")
assert all(toSort[Literal(i)] == Literal(i+1) for i in range(len(initial))), "Array not sorted correctly"
# analyze_complexity(quickSort, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
def getPivot(z: MemoryArray, l: Literal, r: Literal, mode) -> Literal:
if mode == 0:
return r
else:
mid_offset = r.value - l.value
mid_offset = mid_offset // 2
mid = Literal(l.value + mid_offset)
# Return median of left, middle, and right elements
if ((z[l] <= z[mid] and z[mid] <= z[r]) or
(z[r] <= z[mid] and z[mid] <= z[l])):
return mid
elif ((z[mid] <= z[l] and z[l] <= z[r]) or
(z[r] <= z[l] and z[l] <= z[mid])):
return l
else:
return r
def swap(z: MemoryArray, i: int, j: int):
tmp = z[Literal(i)].value
z[Literal(i)] = z[Literal(j)]
z[Literal(j)].set(tmp)
# toSort[] --> Array to be sorted,
# left --> Starting index,
# right --> Ending index
# adapted from https://stackoverflow.com/questions/68524038/is-there-a-python-implementation-of-quicksort-without-recursion
def quickSortIterative(toSort : MemoryArray, left : Literal, right : Literal, mode=0):
# Create a manually managed stack and avoid pythons recursion-limit
size = right.value - left.value + 1
stack : MemoryArray = MemoryArray([0] * size)
top : MemoryCell = MemoryCell(-1)
# push initial values of l and h to stack
top += Literal(1)
stack[top] = left
top += Literal(1)
stack[top] = right
# Keep popping from stack until its empty
while top >= Literal(0):
logger.debug(f"size {size}, stack {stack}, right {right} and left {left}, top {top}")
# Pop h and l - Ensure we are not getting them by Ref, this will produce weird "JUST A LITTLE OF" Results
right = Literal(stack[top].get())
top -= Literal(1)
left = Literal(stack[top].get())
top -= Literal(1)
# Set pivot element at its correct position in sorted array
p = partitionIterative(toSort, left, right, mode)
# If there are elements on left side of pivot, then push left side to stack
if p.pred() > left:
top += Literal(1)
stack[top] = left
top += Literal(1)
stack[top] = p.pred()
# If there are elements on right side of pivot, then push right side to stack
if p.succ() < right:
top += Literal(1)
stack[top] = p.succ()
top += Literal(1)
stack[top] = right
def partitionIterative(arr : MemoryArray, l : Literal, h : Literal, mode=0):
logger.debug(f"Partitioning {arr}, {l} and {h}")
pivot_idx : Literal = getPivot(arr, l, h, mode)
# If pivot isn't at the high end, swap it there
if pivot_idx != h:
swap(arr, int(pivot_idx), int(h))
# Carefull that we do not use a reference. I suppose python would return one here if we just assign without value>Literal cast.
# At least this helped fix weird issue
pivotValue : Literal = Literal(arr[h].value)
i : MemoryCell = MemoryCell(l.pred())
for j in mrange(l, h):
if arr[j] <= pivotValue:
i += Literal(1) # increment index of smaller element
swap(arr, int(i), int(j))
swap(arr, int(i.succ()), int(h))
return i.succ()
def LEGACY_quickSort(z: MemoryArray, l: Literal = Literal(0), r: Literal = Literal(-1), mode=0):
if r == Literal(-1):
r = z.length().pred();
if l < r:
q = LEGACY_partition(z, l, r, mode)
LEGACY_quickSort(z, l, q.pred())
LEGACY_quickSort(z, q.succ(), r)
def LEGACY_partition(z: MemoryArray, l: Literal, r: Literal, mode):
# Get pivot
pivot_idx = getPivot(z, l, r, mode)
# If pivot is not already at the right end, swap it there
if pivot_idx != r:
swap(z, int(pivot_idx), int(r))
with MemoryCell(z[r]) as pivot, MemoryCell(l) as i, MemoryCell(r.pred()) as j:
while i < j:
while z[i] < pivot:
i.set(i.succ())
while j > l and z[j] >= pivot:
j.set(j.pred())
if i < j:
swap(z, int(i), int(j))
i.set(i.succ())
j.set(j.pred())
if i == j and z[i] < pivot:
i.set(i.succ())
if z[i] != pivot:
swap(z, int(i), int(r))
return Literal(i)
def analyze_complexity(fn, sizes):
"""
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
:param max_sequence_func: Die Funktion, die analysiert wird.
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
random_array = MemoryArray.create_random_array(size, -100, 100)
fn(random_array, Literal(0), random_array.length().pred())
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "adds", "compares", "reads", "writes"])
if __name__ == '__main__':
# For debug, assert if working and complexity-analysis
example()
print("I ran into a MaxRecursionDepth Error. From what I read on the Internet python does not do Tailcall Optimizations")
print("Increasing recursion-limit seems like a poor Idea, therefore tried an iterative approach with manual stack-keeping")
toSort = MemoryArray.create_array_from_file("data/seq0.txt")
print(toSort)
quickSortIterative(toSort, Literal(0), toSort.length().pred())
print(toSort)
# analyze_complexity(quickSortIterative, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt" ,"data/seq3.txt"]:
# for filename in [ "data/seq1.txt"]:
print(filename)
toSort = MemoryArray.create_array_from_file(filename)
timeMS(quickSortIterative, toSort, Literal(0), toSort.length().pred(), mode=1)
# print(toSort)
print("Kann durch die Modifikation eine besser Laufzeit als nlog(n) erreicht werden? Nein! nlog(n) ist das Minimum. Durch die Änderung kann aber der Worst-Case fall von n^2 für z.B. bereits vorsortierte Arrays oder Arrays mit vielen Duplikaten vermieden werden.")

View File

@ -0,0 +1,158 @@
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.literal import Literal
from utils.constants import MAX_VALUE
from utils.memory_range import mrange
# Impl of MemoryArray says we cant add our own Datatypes beside Literal and List
# BUUUUT we can just wrap our Datatype in a List :-)
# We store them in a MemoryArray internaly tho anyhow so we increment our Counters for the RAM
class HeapEntry:
def __init__(self, item, priority=1):
self.data = MemoryArray(Literal(2))
# 0: Content, 1: Prio
self.data[Literal(0)] = Literal(item)
self.data[Literal(1)] = Literal(priority)
def getItem(self):
return self.data[Literal(0)]
def getPriority(self):
return self.data[Literal(1)]
def setPriority(self, priority):
self.data[Literal(1)] = Literal(priority)
def __lt__(self, other):
if other is None:
return True
if isinstance(other, (int, float)):
return self.getPriority().value > other
return self.getPriority() > other.getPriority()
def __gt__(self, other):
if other is None:
return False
if isinstance(other, (int, float)):
return self.getPriority().value < other
return self.getPriority() < other.getPriority()
def __eq__(self, other):
return self.getPriority() == other.getPriority()
def __str__(self):
return f"({self.getItem()}, prio={self.getPriority()})"
class PriorityQueue:
def __init__(self, max_size : Literal = Literal(100)):
self.heap = MemoryArray(max_size)
# Add uninitialized HeapEntry Values so the Adds/Compares do not fail on emtpy stack.
# Would have to switch to MIN_VALUE if we switch what is a "Higher" Prio
for i in mrange(max_size.value):
self.heap[i].set([HeapEntry(MAX_VALUE, MAX_VALUE)])
self.size = MemoryCell(0)
def parent(self, i: Literal) -> Literal:
return MemoryCell(i.pred()) // Literal(2)
def leftChild(self, i: Literal) -> Literal:
return MemoryCell(MemoryCell(2) * i) + Literal(1)
def rightChild(self, i: Literal) -> Literal:
return MemoryCell(MemoryCell(2) * i) + Literal(2)
# Swap the Lists -> Therefore get the value which is the List and then Set it again
def swap(self, i: Literal, j: Literal):
tmp_i = self.heap[i].value
tmp_j = self.heap[j].value
self.heap[i].set(tmp_j)
self.heap[j].set(tmp_i)
def maxHeapify(self, i: Literal):
left = self.leftChild(i)
right = self.rightChild(i)
largest = i
if left < Literal(self.size.value) and self.heap[left].value[0] > self.heap[largest].value[0]:
largest = left
if right < Literal(self.size.value) and self.heap[right].value[0] > self.heap[largest].value[0]:
largest = right
if largest != i:
self.swap(i, largest)
self.maxHeapify(largest)
def insert(self, entry : HeapEntry):
if self.size >= self.heap.length():
raise IndexError("Heap full")
i = self.size
self.heap[i].set([entry])
self.size += Literal(1)
while i > Literal(0) and self.heap[self.parent(i)].value[0] < self.heap[i].value[0]:
self.swap(i, self.parent(i))
i = self.parent(i)
def pop(self):
if self.isEmpty():
raise IndexError("Queue is empty!")
max_item = self.heap[Literal(0)].value[0]
self.heap[Literal(0)] = self.heap[self.size - Literal(1)]
self.size -= Literal(1)
self.maxHeapify(Literal(0))
return max_item
def peek(self):
if self.isEmpty():
raise IndexError("Queue is empty")
return self.heap[Literal(0)].value[0]
def isEmpty(self):
return self.size == Literal(0)
def __len__(self):
return self.size
if __name__ == '__main__':
# Proof of Concept
testEntry = HeapEntry("A", 2)
print(testEntry)
testArray = MemoryArray([testEntry])
print(testArray)
print(testArray[Literal(0)])
# Queue Testing
pq = PriorityQueue()
try:
pq.pop()
assert False, "Queue should be empty"
except IndexError:
pass
assert(pq.isEmpty() and pq.size == Literal(0))
entry = HeapEntry("A", 1)
pq.insert(entry)
assert(not pq.isEmpty() and pq.size == Literal(1))
pq.peek()
assert(not pq.isEmpty())
assert(pq.pop() == HeapEntry("A", 1))
assert(pq.isEmpty())
pq.insert(HeapEntry("A", 1))
pq.insert(HeapEntry("C", 3))
pq.insert(HeapEntry("B", 2))
assert(pq.size == Literal(3))
assert(pq.pop() == HeapEntry("A", 1))
assert(pq.pop() == HeapEntry("B", 2))
assert(pq.pop() == HeapEntry("C", 3))
pq.insert(HeapEntry("A", 1))
pq.insert(HeapEntry("C", 3))
pq.insert(HeapEntry("B", 2))
print(pq.pop())
print(pq.pop())
print(pq.pop())