2025-04-13 19:03:06 +02:00

191 lines
7.0 KiB
Python

import logging
logger = logging.getLogger(__name__)
# logging.basicConfig(level=logging.DEBUG)
import time
def timeMS(func, *args, **kwargs):
startTime = time.perf_counter()
result = func(*args, **kwargs)
endTime = time.perf_counter()
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
print(f"{func.__name__} took {elapsedMS:.2f} ms")
return result
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.literal import Literal
from utils.constants import MIN_VALUE
from utils.memory_manager import MemoryManager
from utils.memory_range import mrange
def example():
initial = [6, 5, 3, 8, 1, 7, 2, 4]
# initial = [-6, -5, -3, -8, 1, 7, 2, 4]
toSort = MemoryArray(initial)
quickSortIterative(toSort, Literal(0), toSort.length().pred())
logger.debug(f"sorted {toSort} vs initial {initial}")
assert all(toSort[Literal(i)] == Literal(i+1) for i in range(len(initial))), "Array not sorted correctly"
# analyze_complexity(quickSort, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
def getPivot(z: MemoryArray, l: Literal, r: Literal, mode) -> Literal:
if mode == 0:
return r
else:
mid_offset = r.value - l.value
mid_offset = mid_offset // 2
mid = Literal(l.value + mid_offset)
# Return median of left, middle, and right elements
if ((z[l] <= z[mid] and z[mid] <= z[r]) or
(z[r] <= z[mid] and z[mid] <= z[l])):
return mid
elif ((z[mid] <= z[l] and z[l] <= z[r]) or
(z[r] <= z[l] and z[l] <= z[mid])):
return l
else:
return r
def swap(z: MemoryArray, i: int, j: int):
tmp = z[Literal(i)].value
z[Literal(i)] = z[Literal(j)]
z[Literal(j)].set(tmp)
# toSort[] --> Array to be sorted,
# left --> Starting index,
# right --> Ending index
# adapted from https://stackoverflow.com/questions/68524038/is-there-a-python-implementation-of-quicksort-without-recursion
def quickSortIterative(toSort : MemoryArray, left : Literal, right : Literal, mode=0):
# Create a manually managed stack and avoid pythons recursion-limit
size = right.value - left.value + 1
stack : MemoryArray = MemoryArray([0] * size)
top : MemoryCell = MemoryCell(-1)
# push initial values of l and h to stack
top += Literal(1)
stack[top] = left
top += Literal(1)
stack[top] = right
# Keep popping from stack until its empty
while top >= Literal(0):
logger.debug(f"size {size}, stack {stack}, right {right} and left {left}, top {top}")
# Pop h and l - Ensure we are not getting them by Ref, this will produce weird "JUST A LITTLE OF" Results
right = Literal(stack[top].get())
top -= Literal(1)
left = Literal(stack[top].get())
top -= Literal(1)
# Set pivot element at its correct position in sorted array
p = partitionIterative(toSort, left, right, mode)
# If there are elements on left side of pivot, then push left side to stack
if p.pred() > left:
top += Literal(1)
stack[top] = left
top += Literal(1)
stack[top] = p.pred()
# If there are elements on right side of pivot, then push right side to stack
if p.succ() < right:
top += Literal(1)
stack[top] = p.succ()
top += Literal(1)
stack[top] = right
def partitionIterative(arr : MemoryArray, l : Literal, h : Literal, mode=0):
logger.debug(f"Partitioning {arr}, {l} and {h}")
pivot_idx : Literal = getPivot(arr, l, h, mode)
# If pivot isn't at the high end, swap it there
if pivot_idx != h:
swap(arr, int(pivot_idx), int(h))
# Carefull that we do not use a reference. I suppose python would return one here if we just assign without value>Literal cast.
# At least this helped fix weird issue
pivotValue : Literal = arr[h]
i : MemoryCell = MemoryCell(l.pred())
for j in mrange(l, h):
if arr[j] <= pivotValue:
i += Literal(1) # increment index of smaller element
swap(arr, int(i), int(j))
swap(arr, i.succ().value, h.value)
return i.succ()
def LEGACY_quickSort(z: MemoryArray, l: Literal = Literal(0), r: Literal = Literal(-1), mode=0):
if r == Literal(-1):
r = z.length().pred();
if l < r:
q = LEGACY_partition(z, l, r, mode)
LEGACY_quickSort(z, l, q.pred())
LEGACY_quickSort(z, q.succ(), r)
def LEGACY_partition(z: MemoryArray, l: Literal, r: Literal, mode):
# Get pivot
pivot_idx = getPivot(z, l, r, mode)
# If pivot is not already at the right end, swap it there
if pivot_idx != r:
swap(z, int(pivot_idx), int(r))
with MemoryCell(z[r]) as pivot, MemoryCell(l) as i, MemoryCell(r.pred()) as j:
while i < j:
while z[i] < pivot:
i.set(i.succ())
while j > l and z[j] >= pivot:
j.set(j.pred())
if i < j:
swap(z, int(i), int(j))
i.set(i.succ())
j.set(j.pred())
if i == j and z[i] < pivot:
i.set(i.succ())
if z[i] != pivot:
swap(z, int(i), int(r))
return Literal(i)
def analyze_complexity(fn, sizes):
"""
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
:param max_sequence_func: Die Funktion, die analysiert wird.
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
random_array = MemoryArray.create_random_array(size, -100, 100)
fn(random_array, Literal(0), random_array.length().pred())
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "adds", "compares", "reads", "writes"])
if __name__ == '__main__':
# For debug, assert if working and complexity-analysis
example()
print("I ran into a MaxRecursionDepth Error. From what I read on the Internet python does not do Tailcall Optimizations")
print("Increasing recursion-limit seems like a poor Idea, therefore tried an iterative approach with manual stack-keeping")
toSort = MemoryArray.create_array_from_file("data/seq0.txt")
print(toSort)
quickSortIterative(toSort, Literal(0), toSort.length().pred())
print(toSort)
# analyze_complexity(quickSortIterative, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt" ,"data/seq3.txt"]:
# for filename in [ "data/seq1.txt"]:
print(filename)
toSort = MemoryArray.create_array_from_file(filename)
timeMS(quickSortIterative, toSort, Literal(0), toSort.length().pred(), mode=1)
print(toSort)
print("Kann durch die Modifikation eine besser Laufzeit als nlog(n) erreicht werden? Nein! nlog(n) ist das Minimum. Durch die Änderung kann aber der Worst-Case fall von n^2 für z.B. bereits vorsortierte Arrays oder Arrays mit vielen Duplikaten vermieden werden.")