294 lines
11 KiB
Python

import logging
logger = logging.getLogger(__name__)
# logging.basicConfig(level=logging.DEBUG)
import time
def timeMS(func, *args, **kwargs):
startTime = time.perf_counter()
result = func(*args, **kwargs)
endTime = time.perf_counter()
elapsedMS = (endTime - startTime) * 1000 # Convert to milliseconds
print(f"{func.__name__} took {elapsedMS:.2f} ms")
return result
from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.literal import Literal
from utils.constants import MAX_VALUE
from utils.memory_manager import MemoryManager
from utils.memory_range import mrange
# Impl of MemoryArray says we cant add our own Datatypes beside Literal and List
# BUUUUT we can just wrap our Datatype in a List :-)
# We store them in a MemoryArray internaly tho anyhow so we increment our Counters for the RAM
class HeapEntry:
def __init__(self, item, priority=1):
self.data = MemoryArray(Literal(2))
# 0: Content, 1: Prio
self.data[Literal(0)] = Literal(item)
self.data[Literal(1)] = Literal(priority)
def getItem(self):
return self.data[Literal(0)]
def getPriority(self):
return self.data[Literal(1)]
def setPriority(self, priority):
self.data[Literal(1)] = Literal(priority)
def __lt__(self, other):
if other is None:
return True
if isinstance(other, (int, float)):
return self.getPriority().value > other
return self.getPriority() > other.getPriority()
def __gt__(self, other):
if other is None:
return False
if isinstance(other, (int, float)):
return self.getPriority().value < other
return self.getPriority() < other.getPriority()
def __eq__(self, other):
return self.getPriority() == other.getPriority()
def __str__(self):
return f"({self.getItem()}, prio={self.getPriority()})"
class PriorityQueue:
def __init__(self, max_size : Literal = Literal(100)):
self.heap = MemoryArray(max_size)
# Add uninitialized HeapEntry Values so the Adds/Compares do not fail on emtpy stack.
# Would have to switch to MIN_VALUE if we switch what is a "Higher" Prio
for i in mrange(max_size.value):
self.heap[i].set([HeapEntry(MAX_VALUE, MAX_VALUE)])
self.size = MemoryCell(0)
def parent(self, i: Literal) -> Literal:
return MemoryCell(i.pred()) // Literal(2)
def leftChild(self, i: Literal) -> Literal:
return MemoryCell(MemoryCell(2) * i) + Literal(1)
def rightChild(self, i: Literal) -> Literal:
return MemoryCell(MemoryCell(2) * i) + Literal(2)
# Swap the Lists -> Therefore get the value which is the List and then Set it again
def swap(self, i: Literal, j: Literal):
tmp_i = self.heap[i].value
tmp_j = self.heap[j].value
self.heap[i].set(tmp_j)
self.heap[j].set(tmp_i)
def maxHeapify(self, i: Literal):
left = self.leftChild(i)
right = self.rightChild(i)
largest = i
if left < Literal(self.size.value) and self.heap[left].value[0] > self.heap[largest].value[0]:
largest = left
if right < Literal(self.size.value) and self.heap[right].value[0] > self.heap[largest].value[0]:
largest = right
if largest != i:
self.swap(i, largest)
self.maxHeapify(largest)
def insert(self, entry : HeapEntry):
if self.size >= self.heap.length():
raise IndexError("Heap full")
i = self.size
self.heap[i].set([entry])
while i > Literal(0) and self.heap[self.parent(i)].value[0] < self.heap[i].value[0]:
self.swap(i, self.parent(i))
i = self.parent(i)
self.size += Literal(1)
def pop(self):
if self.isEmpty():
raise IndexError("Queue is empty!")
max_item = self.heap[Literal(0)].value[0]
self.heap[Literal(0)] = self.heap[self.size - Literal(1)]
self.size -= Literal(1)
self.maxHeapify(Literal(0))
return max_item
def peek(self):
if self.isEmpty():
raise IndexError("Queue is empty")
return self.heap[Literal(0)].value[0]
def isEmpty(self):
return self.size == Literal(0)
def __len__(self):
return self.size
def __str__(self):
entries = []
for i in mrange(self.size.value):
entry = self.heap[i].value[0]
if entry.getItem() != MAX_VALUE:
entries.append(str(entry))
return "[" + ", ".join(entries) + "]"
# Insert here so we dont run into import problems, but can deliver this file Standalone
class BinaryTreeNode(MemoryCell):
def __init__(self, value):
super().__init__(value)
self.left = None
self.right = None
def __repr__(self):
return f"BinaryTreeNode(value={self.value}, left={self.left}, right={self.right})"
def __str__(self):
return str(self.value)
class BinaryTree:
def __init__(self):
self.root: BinaryTreeNode | None = None
def insert(self, value: BinaryTreeNode):
# Insert at Leaf, if smaller then left one, otherwise right one
def _insert(node: BinaryTreeNode | None, value) -> BinaryTreeNode:
if node is None:
return BinaryTreeNode(value)
if value < node:
node.left = _insert(node.left, value) # type: ignore -> Ignoring pywright errors
else:
node.right = _insert(node.right, value) # type: ignore -> Ignoring pywright errors
return node
self.root = _insert(self.root, value)
def traverse(self, mode="in", visual=False):
mode = mode.lower()
# Have internal depth counting
def InternalTraverse(node, prefix="", is_left=True, depth=0):
if node is None:
return [] if not visual else []
result = []
node_str = str(node)
prefixAcc = prefix + ("| " if is_left and depth > 0 else " ")
if visual:
connector = "+-- " if is_left else "L-- "
line = prefix + connector + node_str if depth > 0 else node_str
result.append(line)
else:
result.append(node_str)
if mode == "pre":
result += InternalTraverse(node.left, prefixAcc, True, depth + 1)
result += InternalTraverse(node.right, prefixAcc, False, depth + 1)
elif mode == "in":
result += InternalTraverse(node.left, prefixAcc, True, depth + 1)
result += InternalTraverse(node.right, prefixAcc, False, depth + 1)
elif mode == "post":
result += InternalTraverse(node.left, prefixAcc, True, depth + 1)
result += InternalTraverse(node.right, prefixAcc, False, depth + 1)
return result
if self.root is None:
return "(empty tree)" if visual else []
result = InternalTraverse(self.root)
return "\n".join(result) if visual else result
def levelOrderWithPriorityQueue(self):
if not self.root:
return []
# Create a priority queue, using a reduced prio for every new entry -> behaviour as regular queue FIFO
pq = PriorityQueue(Literal(1000))
# Again we cannot create a MemoryArray of dynamic sizes and also cannot create a string as MemoryCell does not like it
# Again we just create a list holding a single dummy Entry (to set its size to 1) and then just use this "list" as our string
# Appending to it is easy as it is just a regular list and in the end we return it
# Like MemoryCell("").value.append("STRING") will fail. But list-wrap works.
#
# Sorry for Syntax, dont know any better way to have everything as RAM-Managed memory:-(
result = MemoryArray(["MYSTRING"])
result[Literal(0)].set([]);
counter = MemoryCell(0)
def nextPriority():
val = counter.value
counter.set(Literal(val + 1))
return val
pq.insert(HeapEntry([self.root], nextPriority()))
while not pq.isEmpty():
entry = pq.pop()
node = entry.getItem().value
result[Literal(0)].value.append(str(node[0]))
if node[0].left:
pq.insert(HeapEntry([node[0].left], nextPriority()))
if node[0].right:
pq.insert(HeapEntry([node[0].right], nextPriority()))
return result[Literal(0)]
def __str__(self):
return str(self.traverse(mode="PrE", visual=True))
def analyze_complexity(fn, sizes):
"""
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
:param max_sequence_func: Die Funktion, die analysiert wird.
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
random_array = MemoryArray.create_random_array(size, -100, 100)
fn(random_array, Literal(0), random_array.length().pred())
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "adds", "compares", "reads", "writes"])
if __name__ == '__main__':
# For debug, assert if working and complexity-analysis
# example()
print("Sorry for the Syntax and the large file, tried to keep everything as a standalone file to help make it \" download and run \".\n \
Also did - once again - not find a better way to have a queue managed by the RAM contain the values of non-integer-attributes I \n\
needed it to. Therefore i reused my Priorityqueue and its accesses via the unspecified wrapped list.");
# for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt" ,"data/seq3.txt"]:
for filename in [ "data/seq0.txt"]:
print(filename)
binTreeData = MemoryArray.create_array_from_file(filename)
binTree = BinaryTree()
for value in binTreeData:
binTree.insert(BinaryTreeNode(value))
# Print overlaoded InOrder traversal
print(binTree)
# print(binTree.traverse(mode="pre", visual=False))
# print(binTree.traverse(mode="in", visual=False))
# print(binTree.traverse(mode="post", visual=False))
# Print Levelorder traversal:
print(binTree.levelOrderWithPriorityQueue())