142 lines
4.1 KiB
Python

from utils.memory_array import MemoryArray
from utils.memory_cell import MemoryCell
from utils.literal import Literal
from utils.constants import MIN_VALUE
from utils.memory_manager import MemoryManager
from utils.memory_range import mrange
def max_sequence_1(z: MemoryArray):
n = z.length()
m = MemoryCell(MIN_VALUE)
s = MemoryCell()
l = MemoryCell()
r = MemoryCell()
for i in mrange(n):
for j in mrange(i, n):
s.set(0)
for k in mrange(i, j):
s += z[k]
if s > m:
m.set(s)
l.set(i)
r.set(j)
return m, l, r
def max_sequence_2(z: MemoryArray):
n = z.length()
m = MemoryCell(MIN_VALUE)
s = MemoryCell()
l = MemoryCell()
r = MemoryCell()
for i in mrange(n):
s.set(0)
for j in mrange(i, n):
s += z[j]
if s > m:
m.set(s)
l.set(i)
r.set(j)
return m, l, r
def _max_sequence_3_sub(z: MemoryArray, l: Literal, m: Literal, r: Literal):
# find max-sum from Middle to left (including on elem from right)
linksMax = MemoryCell(MIN_VALUE)
sum = MemoryCell(0)
links = MemoryCell(l)
rechts = MemoryCell(l)
for i in mrange(m, MemoryCell(l)-Literal(1), -1):
sum += z[i]
if sum > linksMax :
linksMax.set(sum)
links.set(i)
# find max-sum from Middle to right (inluding one elem from left)
rechtsMax = MemoryCell(MIN_VALUE)
sum.set(0);
startRight = MemoryCell(1) + m
for i in mrange(startRight, r):
sum += z[i]
if sum > rechtsMax:
rechtsMax.set(sum)
rechts.set(i)
return (linksMax + rechtsMax), links, rechts
def _max_sequence_3(z: MemoryArray, l: Literal, r: Literal):
# Calc-Vars -> illegal to use Literal(0) here? Probably
linksMax = MemoryCell()
linksL = MemoryCell()
linksR = MemoryCell()
rechtsMax = MemoryCell()
rechtsL = MemoryCell()
rechtsR = MemoryCell()
zwiMax = MemoryCell()
zwiL = MemoryCell()
zwiR = MemoryCell()
# Middle
m = MemoryCell()
# Rec-Term - Reached subarray of size 1
if l == r:
return (z[l], l, r)
# calc middle
m.set(MemoryCell(l) + r)
m /= Literal(2);
# get maxLeft, then maxRight and then cross them (rec)
(linksMax, linksL, linksR) = _max_sequence_3(z, l, m)
startRight = MemoryCell(1) + m
(rechtsMax, rechtsL, rechtsR) = _max_sequence_3(z, startRight, r)
(zwiMax, zwiL, zwiR) = _max_sequence_3_sub(z, l, m, r)
if linksMax >= rechtsMax and linksMax >= zwiMax:
return (linksMax, linksL, linksR)
if rechtsMax >= linksMax and rechtsMax >= zwiMax:
return (rechtsMax, rechtsL, rechtsR)
return (zwiMax, zwiL, zwiR)
# Wrapper for Seq DivAndConquer to keep call/teststructure possible
def max_sequence_3(z: MemoryArray):
# Start with full range
lstart = Literal(0)
rend = Literal(len(z) - 1)
return _max_sequence_3(z, lstart, rend)
def example(max_sequence_func):
l = [-59, 52, 46, 14, -50, 58, -87, -77, 34, 15]
print(l)
z = MemoryArray(l)
m, l, r = max_sequence_func(z)
print(m, l, r)
assert(m == Literal(120))
def seq(filename, max_sequence_func):
z = MemoryArray.create_array_from_file(filename)
m, l, r = max_sequence_func(z)
print(m, l, r)
def analyze_complexity(max_sequence_func, sizes):
"""
Analysiert die Komplexität einer maximalen Teilfolgenfunktion.
:param max_sequence_func: Die Funktion, die analysiert wird.
:param sizes: Eine Liste von Eingabegrößen für die Analyse.
"""
for size in sizes:
MemoryManager.purge() # Speicher zurücksetzen
random_array = MemoryArray.create_random_array(size, -100, 100)
max_sequence_func(random_array)
MemoryManager.save_stats(size)
MemoryManager.plot_stats(["cells", "adds"])
if __name__ == '__main__':
fn = max_sequence_3
example(fn)
for filename in ["data/seq0.txt", "data/seq1.txt", "data/seq2.txt"]:
print(filename)
seq(filename, fn)
analyze_complexity(fn, [10, 20, 30, 40, 50, 60, 70, 80, 90, 100])