library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.float.all; use work.task.all; entity sine is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; step_size : in work.reg32.word; phase : in work.reg32.word; amplitude : in work.reg32.word; signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity sine; architecture rtl of sine is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; type CalcState is ( CALC_IDLE, CALC_ANGLE, CALC_START, CALC_BUSY, CALC_WRITE, CALC_DONE ); signal Calc_State : CalcState; signal data_valid_ipcore : std_logic; signal busy_ipcore : std_logic; signal result_valid_ipcore : std_logic; signal angle_ipcore : signed(31 downto 0); signal step_size_adapted : std_logic_vector( 31 downto 0 ); signal sine_amplitude : signed(31 downto 0); signal sine_ipcore : signed(31 downto 0); begin u_float_sine: entity work.float_sine generic map( ITERATIONS => 8 ) port map( clk => clk, reset => reset, data_valid => data_valid_ipcore, busy => busy_ipcore, result_valid => result_valid_ipcore, -- " TODO Check if this is allowed (direkt access to maped signal)" angle => angle_ipcore, sine => sine_ipcore ); task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; Calc_State <= CALC_IDLE; index <= 0; signal_write <= '0'; elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; case next_task_state is when work.task.TASK_IDLE => index <= 0; signal_write <= '0'; Calc_State <= CALC_IDLE; when work.task.TASK_RUNNING => case Calc_State is when CALC_IDLE => angle_ipcore <= SIGNED(phase); Calc_State <= CALC_START; when CALC_ANGLE => angle_ipcore <= (angle_ipcore + (SIGNED(step_size_adapted))); Calc_State <= CALC_START; when CALC_START => data_valid_ipcore <= '1'; if(busy_ipcore = '1') then Calc_State <= CALC_BUSY; end if; when CALC_BUSY => data_valid_ipcore <= '0'; if(result_valid_ipcore = '1') then Calc_State <= CALC_WRITE; end if; when CALC_WRITE => -- sine_amplitude <= sine_ipcore(30 downto 23) + (signed(amplitude))(30 downto 23) - "127"; sine_amplitude <= sine_ipcore(31 downto 31) & (sine_ipcore(30 downto 23) + (signed(amplitude(30 downto 23)) - 127)) & sine_ipcore(22 downto 0); -- sine_amplitude <= STD_LOGIC_VECTOR(sine_ipcore(30 downto 23)) + STD_LOGIC_VECTOR(amplitude(30 downto 23)) - "127"; signal_write <= '1'; Calc_State <= CALC_DONE; when CALC_DONE => signal_write <= '0'; index <= index + 1; Calc_State <= CALC_ANGLE; end case; when work.task.TASK_DONE => index <= 0; signal_write <= '0'; end case; end if; end process sync; signal_writedata <= STD_LOGIC_VECTOR(sine_amplitude); --step_size_adapted <= (step_size(31-5 downto 0) & "00000"); step_size_adapted <= (step_size ); task_state <= current_task_state; -- #TODO phase_ipcore <= (SIGNED(phase)); end architecture rtl;