@@ -0,0 +1,50 @@ | |||
\relax | |||
\bibstyle{unsrt} | |||
\citation{Zrinzo.2012} | |||
\citation{Latulippe.2015} | |||
\citation{Sun.07.07.201511.07.2015} | |||
\citation{Beigel.29thAugust1stSeptember2005} | |||
\citation{DiNatali.2016} | |||
\citation{Marechal.25.08.201529.08.2015} | |||
\citation{Song.2014} | |||
\@writefile{toc}{\contentsline {section}{\numberline {1}Paper von Rafael}{1}\protected@file@percent } | |||
\citation{Pham.21.04.201424.04.2014} | |||
\citation{Than.2012} | |||
\citation{Mehmood.08.10.201209.10.2012} | |||
\citation{Yang.2010} | |||
\citation{Freschi.2010} | |||
\citation{Jiang.12.10.200714.10.2007} | |||
\citation{Jiang.30.05.200831.05.2008} | |||
\citation{Schreiber.2004} | |||
\citation{Baillet.2001} | |||
\citation{Albera.2008} | |||
\citation{Lamus.2007} | |||
\citation{Wang.June21252004} | |||
\citation{Prakash.30Oct.2Nov.1997} | |||
\citation{Disegi.2000} | |||
\citation{Arciola.1999} | |||
\@writefile{toc}{\contentsline {section}{\numberline {2}weiterführende Recherche verwandt mit Rafis Papers}{3}\protected@file@percent } | |||
\@writefile{toc}{\contentsline {section}{\numberline {3}Fragen und Ideen während Literaturrecherche}{3}\protected@file@percent } | |||
\bibdata{Literatur} | |||
\bibcite{Zrinzo.2012}{1} | |||
\bibcite{Latulippe.2015}{2} | |||
\bibcite{Sun.07.07.201511.07.2015}{3} | |||
\bibcite{Beigel.29thAugust1stSeptember2005}{4} | |||
\bibcite{DiNatali.2016}{5} | |||
\bibcite{Marechal.25.08.201529.08.2015}{6} | |||
\bibcite{Song.2014}{7} | |||
\bibcite{Pham.21.04.201424.04.2014}{8} | |||
\bibcite{Than.2012}{9} | |||
\bibcite{Mehmood.08.10.201209.10.2012}{10} | |||
\bibcite{Yang.2010}{11} | |||
\bibcite{Freschi.2010}{12} | |||
\bibcite{Jiang.12.10.200714.10.2007}{13} | |||
\bibcite{Jiang.30.05.200831.05.2008}{14} | |||
\bibcite{Schreiber.2004}{15} | |||
\bibcite{Baillet.2001}{16} | |||
\bibcite{Albera.2008}{17} | |||
\bibcite{Lamus.2007}{18} | |||
\bibcite{Wang.June21252004}{19} | |||
\bibcite{Prakash.30Oct.2Nov.1997}{20} | |||
\bibcite{Disegi.2000}{21} | |||
\bibcite{Arciola.1999}{22} |
@@ -0,0 +1,146 @@ | |||
\begin{thebibliography}{10} | |||
\bibitem{Zrinzo.2012} | |||
Ludvic Zrinzo. | |||
\newblock Pitfalls in precision stereotactic surgery. | |||
\newblock {\em Surgical neurology international}, 3(Suppl 1):S53--61, 2012. | |||
\bibitem{Latulippe.2015} | |||
Maxime Latulippe and Sylvain Martel. | |||
\newblock Dipole field navigation: Theory and proof of concept. | |||
\newblock {\em IEEE Transactions on Robotics}, 31(6):1353--1363, 2015. | |||
\bibitem{Sun.07.07.201511.07.2015} | |||
Zhenglong Sun, Shaohui Foong, Luc Marechal, Tee~Hui Teo, U-Xuan Tan, and Asim | |||
Shabbir. | |||
\newblock Using heterogeneous sensory measurements in a compliant magnetic | |||
localization system for medical intervention. | |||
\newblock In {\em 2015 IEEE International Conference on Advanced Intelligent | |||
Mechatronics (AIM)}, pages 133--138. IEEE, 07.07.2015 - 11.07.2015. | |||
\bibitem{Beigel.29thAugust1stSeptember2005} | |||
M.~Beigel and J.~McGary. | |||
\newblock Accurate, real-time localization of subminiature inductive | |||
transponders: tumor localization as an example. | |||
\newblock In {\em Proceedings of the 2005 European Conference on Circuit Theory | |||
and Design, 2005}, pages 173--176. IEEE, 29th August - 1st September 2005. | |||
\bibitem{DiNatali.2016} | |||
Christian {Di Natali}, Marco Beccani, Nabil Simaan, and Pietro Valdastri. | |||
\newblock Jacobian-based iterative method for magnetic localization in robotic | |||
capsule endoscopy. | |||
\newblock {\em IEEE Transactions on Robotics}, 32(2):327--338, 2016. | |||
\bibitem{Marechal.25.08.201529.08.2015} | |||
Luc Marechal, Shaohui Foong, Zhenglong Sun, and Kristin~L. Wood. | |||
\newblock Design optimization of the sensor spatial arrangement in a direct | |||
magnetic field-based localization system for medical applications. | |||
\newblock In {\em 2015 37th Annual International Conference of the IEEE | |||
Engineering in Medicine and Biology Society (EMBC)}, pages 897--900. IEEE, | |||
25.08.2015 - 29.08.2015. | |||
\bibitem{Song.2014} | |||
Shuang Song, Baopu Li, Wan Qiao, Chao Hu, Hongliang Ren, Haoyong Yu, Qi~Zhang, | |||
Max Q.-H. Meng, and Guoqing Xu. | |||
\newblock 6-d magnetic localization and orientation method for an annular | |||
magnet based on a closed-form analytical model. | |||
\newblock {\em IEEE Transactions on Magnetics}, 50(9):1--11, 2014. | |||
\bibitem{Pham.21.04.201424.04.2014} | |||
Duc~Minh Pham and Syed~Mahfuzul Aziz. | |||
\newblock A real-time localization system for an endoscopic capsule. | |||
\newblock In {\em 2014 IEEE Ninth International Conference on Intelligent | |||
Sensors, Sensor Networks and Information Processing (ISSNIP)}, pages 1--6. | |||
IEEE, 21.04.2014 - 24.04.2014. | |||
\bibitem{Than.2012} | |||
Trung~Duc Than, Gursel Alici, Hao Zhou, and Weihua Li. | |||
\newblock A review of localization systems for robotic endoscopic capsules. | |||
\newblock {\em IEEE transactions on bio-medical engineering}, 59(9):2387--2399, | |||
2012. | |||
\bibitem{Mehmood.08.10.201209.10.2012} | |||
Nasir Mehmood and Syed~Mahfuzul Aziz. | |||
\newblock Magnetic sensing technology for in vivo tracking. | |||
\newblock In {\em 2012 International Conference on Emerging Technologies}, | |||
pages 1--4. IEEE, 08.10.2012 - 09.10.2012. | |||
\bibitem{Yang.2010} | |||
Wan'an Yang, Chao Hu, Mao Li, Max Q.-H. Meng, and Shuang Song. | |||
\newblock A new tracking system for three magnetic objectives. | |||
\newblock {\em IEEE Transactions on Magnetics}, 46(12):4023--4029, 2010. | |||
\bibitem{Freschi.2010} | |||
Fabio Freschi. | |||
\newblock Localization of sources of brain activity: A milp approach. | |||
\newblock {\em IEEE Transactions on Magnetics}, 46(8):3429--3432, 2010. | |||
\bibitem{Jiang.12.10.200714.10.2007} | |||
Shiqin Jiang, Ming Chi, Lei Zhang, Ming Luo, and Lemin Wang. | |||
\newblock Dipole source localization in magnetocardiography. | |||
\newblock In {\em 2007 Joint Meeting of the 6th International Symposium on | |||
Noninvasive Functional Source Imaging of the Brain and Heart and the | |||
International Conference on Functional Biomedical Imaging}, pages 320--322. | |||
IEEE, 12.10.2007 - 14.10.2007. | |||
\bibitem{Jiang.30.05.200831.05.2008} | |||
Shiqin Jiang, Jiaming Dong, Ming Chi, and Weiyuan Wang. | |||
\newblock Graphical model for the cardiac multi-dipole sources. | |||
\newblock In {\em 2008 International Conference on Technology and Applications | |||
in Biomedicine}, pages 434--436. IEEE, 30.05.2008 - 31.05.2008. | |||
\bibitem{Schreiber.2004} | |||
J.~Schreiber, J.~Haueisen, and J.~Nenonen. | |||
\newblock A new method for choosing the regularization parameter in | |||
time-dependent inverse problems and its application to magnetocardiography. | |||
\newblock {\em IEEE Transactions on Magnetics}, 40(2):1104--1107, 2004. | |||
\bibitem{Baillet.2001} | |||
S.~Baillet, J.~C. Mosher, and R.~M. Leahy. | |||
\newblock Electromagnetic brain mapping. | |||
\newblock {\em IEEE Signal Processing Magazine}, 18(6):14--30, 2001. | |||
\bibitem{Albera.2008} | |||
Laurent Albera, Anne Ferr{\'e}ol, Delphine Cosandier-Rim{\'e}l{\'e}, Isabelle | |||
Merlet, and Fabrice Wendling. | |||
\newblock Brain source localization using a fourth-order deflation scheme. | |||
\newblock {\em IEEE transactions on bio-medical engineering}, 55(2 Pt | |||
1):490--501, 2008. | |||
\bibitem{Lamus.2007} | |||
C.~Lamus, C.~J. Long, M.~S. H{\"a}m{\"a}l{\"a}inen, E.~N. Brown, and P.~L. | |||
Purdon. | |||
\newblock Parameter estimation and dynamic source localization for the | |||
magnetoencephalography (meg) inverse problem. | |||
\newblock {\em Proceedings. IEEE International Symposium on Biomedical | |||
Imaging}, 2007:1092--1095, 2007. | |||
\bibitem{Wang.June21252004} | |||
Xiaona Wang, M.Q.-H. Meng, and Yawen Chan. | |||
\newblock A low-cost tracking method based on magnetic marker for capsule | |||
endoscope. | |||
\newblock In {\em International Conference on Information Acquisition, 2004. | |||
Proceedings}, pages 524--526. IEEE, June 21-25,2004. | |||
\bibitem{Prakash.30Oct.2Nov.1997} | |||
N.~M. Prakash and F.~A. Spelman. | |||
\newblock Localization of a magnetic marker for gi motility studies: an in | |||
vitro feasibility study. | |||
\newblock In {\em Proceedings of the 19th Annual International Conference of | |||
the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones | |||
and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)}, | |||
pages 2394--2397. IEEE, 30 Oct.-2 Nov. 1997. | |||
\bibitem{Disegi.2000} | |||
J.~A. Disegi and L.~Eschbach. | |||
\newblock Stainless steel in bone surgery. | |||
\newblock {\em Injury}, 31:D2--D6, 2000. | |||
\bibitem{Arciola.1999} | |||
Carla~Renata Arciola, Lucio Montanaro, Antonio Moroni, Michele Giordano, Arturo | |||
Pizzoferrato, and Maria~Elena Donati. | |||
\newblock Hydroxyapatite-coated orthopaedic screws as infection resistant | |||
materials: in vitro study. | |||
\newblock {\em Biomaterials}, 20(4):323--327, 1999. | |||
\end{thebibliography} |
@@ -0,0 +1,48 @@ | |||
This is BibTeX, Version 0.99d | |||
Capacity: max_strings=200000, hash_size=200000, hash_prime=170003 | |||
The top-level auxiliary file: Bachelorarbeit_Seyffer_Julian.aux | |||
Reallocating 'name_of_file' (item size: 1) to 6 items. | |||
The style file: unsrt.bst | |||
Reallocating 'name_of_file' (item size: 1) to 10 items. | |||
Database file #1: Literatur.bib | |||
You've used 22 entries, | |||
1791 wiz_defined-function locations, | |||
609 strings with 8994 characters, | |||
and the built_in function-call counts, 6840 in all, are: | |||
= -- 662 | |||
> -- 282 | |||
< -- 9 | |||
+ -- 102 | |||
- -- 80 | |||
* -- 487 | |||
:= -- 1007 | |||
add.period$ -- 75 | |||
call.type$ -- 22 | |||
change.case$ -- 22 | |||
chr.to.int$ -- 0 | |||
cite$ -- 22 | |||
duplicate$ -- 300 | |||
empty$ -- 648 | |||
format.name$ -- 80 | |||
if$ -- 1576 | |||
int.to.chr$ -- 0 | |||
int.to.str$ -- 22 | |||
missing$ -- 22 | |||
newline$ -- 113 | |||
num.names$ -- 22 | |||
pop$ -- 58 | |||
preamble$ -- 1 | |||
purify$ -- 0 | |||
quote$ -- 0 | |||
skip$ -- 170 | |||
stack$ -- 0 | |||
substring$ -- 593 | |||
swap$ -- 106 | |||
text.length$ -- 9 | |||
text.prefix$ -- 0 | |||
top$ -- 0 | |||
type$ -- 0 | |||
warning$ -- 0 | |||
while$ -- 73 | |||
width$ -- 24 | |||
write$ -- 253 |
@@ -0,0 +1,243 @@ | |||
This is pdfTeX, Version 3.14159265-2.6-1.40.21 (MiKTeX 20.7) (preloaded format=pdflatex 2020.8.21) 1 OCT 2020 12:53 | |||
entering extended mode | |||
**./Bachelorarbeit_Seyffer_Julian.tex | |||
(Bachelorarbeit_Seyffer_Julian.tex | |||
LaTeX2e <2020-02-02> patch level 5 | |||
L3 programming layer <2020-08-07> | |||
("C:\Users\seyffejn\AppData\Local\Programs\MiKTeX 2.9\tex/latex/base\article.cl | |||
s" | |||
Document Class: article 2019/12/20 v1.4l Standard LaTeX document class | |||
("C:\Users\seyffejn\AppData\Local\Programs\MiKTeX 2.9\tex/latex/base\size10.clo | |||
" | |||
File: size10.clo 2019/12/20 v1.4l Standard LaTeX file (size option) | |||
) | |||
\c@part=\count168 | |||
\c@section=\count169 | |||
\c@subsection=\count170 | |||
\c@subsubsection=\count171 | |||
\c@paragraph=\count172 | |||
\c@subparagraph=\count173 | |||
\c@figure=\count174 | |||
\c@table=\count175 | |||
\abovecaptionskip=\skip47 | |||
\belowcaptionskip=\skip48 | |||
\bibindent=\dimen134 | |||
) | |||
("C:\Users\seyffejn\AppData\Local\Programs\MiKTeX 2.9\tex/latex/base\inputenc.s | |||
ty" | |||
Package: inputenc 2018/08/11 v1.3c Input encoding file | |||
\inpenc@prehook=\toks15 | |||
\inpenc@posthook=\toks16 | |||
) | |||
("C:\Users\seyffejn\AppData\Local\Programs\MiKTeX 2.9\tex/latex/amsmath\amsmath | |||
.sty" | |||
Package: amsmath 2020/01/20 v2.17e AMS math features | |||
\@mathmargin=\skip49 | |||
For additional information on amsmath, use the `?' option. | |||
("C:\Users\seyffejn\AppData\Local\Programs\MiKTeX 2.9\tex/latex/amsmath\amstext | |||
.sty" | |||
Package: amstext 2000/06/29 v2.01 AMS text | |||
("C:\Users\seyffejn\AppData\Local\Programs\MiKTeX 2.9\tex/latex/amsmath\amsgen. | |||
sty" | |||
File: amsgen.sty 1999/11/30 v2.0 generic functions | |||
\@emptytoks=\toks17 | |||
\ex@=\dimen135 | |||
)) | |||
("C:\Users\seyffejn\AppData\Local\Programs\MiKTeX 2.9\tex/latex/amsmath\amsbsy. | |||
sty" | |||
Package: amsbsy 1999/11/29 v1.2d Bold Symbols | |||
\pmbraise@=\dimen136 | |||
) | |||
("C:\Users\seyffejn\AppData\Local\Programs\MiKTeX 2.9\tex/latex/amsmath\amsopn. | |||
sty" | |||
Package: amsopn 2016/03/08 v2.02 operator names | |||
) | |||
\inf@bad=\count176 | |||
LaTeX Info: Redefining \frac on input line 227. | |||
\uproot@=\count177 | |||
\leftroot@=\count178 | |||
LaTeX Info: Redefining \overline on input line 389. | |||
\classnum@=\count179 | |||
\DOTSCASE@=\count180 | |||
LaTeX Info: Redefining \ldots on input line 486. | |||
LaTeX Info: Redefining \dots on input line 489. | |||
LaTeX Info: Redefining \cdots on input line 610. | |||
\Mathstrutbox@=\box45 | |||
\strutbox@=\box46 | |||
\big@size=\dimen137 | |||
LaTeX Font Info: Redeclaring font encoding OML on input line 733. | |||
LaTeX Font Info: Redeclaring font encoding OMS on input line 734. | |||
\macc@depth=\count181 | |||
\c@MaxMatrixCols=\count182 | |||
\dotsspace@=\muskip16 | |||
\c@parentequation=\count183 | |||
\dspbrk@lvl=\count184 | |||
\tag@help=\toks18 | |||
\row@=\count185 | |||
\column@=\count186 | |||
\maxfields@=\count187 | |||
\andhelp@=\toks19 | |||
\eqnshift@=\dimen138 | |||
\alignsep@=\dimen139 | |||
\tagshift@=\dimen140 | |||
\tagwidth@=\dimen141 | |||
\totwidth@=\dimen142 | |||
\lineht@=\dimen143 | |||
\@envbody=\toks20 | |||
\multlinegap=\skip50 | |||
\multlinetaggap=\skip51 | |||
\mathdisplay@stack=\toks21 | |||
LaTeX Info: Redefining \[ on input line 2859. | |||
LaTeX Info: Redefining \] on input line 2860. | |||
) | |||
("C:\Users\seyffejn\AppData\Local\Programs\MiKTeX 2.9\tex/latex/amsfonts\amsfon | |||
ts.sty" | |||
Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support | |||
\symAMSa=\mathgroup4 | |||
\symAMSb=\mathgroup5 | |||
LaTeX Font Info: Redeclaring math symbol \hbar on input line 98. | |||
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' | |||
(Font) U/euf/m/n --> U/euf/b/n on input line 106. | |||
) | |||
("C:\Users\seyffejn\AppData\Local\Programs\MiKTeX 2.9\tex/latex/amsfonts\amssym | |||
b.sty" | |||
Package: amssymb 2013/01/14 v3.01 AMS font symbols | |||
) | |||
("C:\Users\seyffejn\AppData\Local\Programs\MiKTeX 2.9\tex/latex/l3backend\l3bac | |||
kend-pdfmode.def" | |||
File: l3backend-pdfmode.def 2020-08-07 L3 backend support: PDF mode | |||
\l__kernel_color_stack_int=\count188 | |||
\l__pdf_internal_box=\box47 | |||
) (Bachelorarbeit_Seyffer_Julian.aux) | |||
\openout1 = `Bachelorarbeit_Seyffer_Julian.aux'. | |||
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 11. | |||
LaTeX Font Info: ... okay on input line 11. | |||
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 11. | |||
LaTeX Font Info: ... okay on input line 11. | |||
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 11. | |||
LaTeX Font Info: ... okay on input line 11. | |||
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 11. | |||
LaTeX Font Info: ... okay on input line 11. | |||
LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 11. | |||
LaTeX Font Info: ... okay on input line 11. | |||
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 11. | |||
LaTeX Font Info: ... okay on input line 11. | |||
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 11. | |||
LaTeX Font Info: ... okay on input line 11. | |||
Underfull \hbox (badness 10000) in paragraph at lines 20--21 | |||
[] | |||
Overfull \hbox (5.94185pt too wide) in paragraph at lines 22--23 | |||
[]\OT1/cmr/bx/n/10 Mittels MRT mag-netis-che Marker durch Gefae navigieren. K | |||
onnte | |||
[] | |||
Underfull \hbox (badness 10000) in paragraph at lines 22--23 | |||
[] | |||
Overfull \hbox (6.56805pt too wide) in paragraph at lines 24--28 | |||
\OT1/cmr/m/n/10 Auerdem wer-den \OT1/cmr/bx/n/10 komerziell erhaltliche Sys-t | |||
em? \OT1/cmr/m/n/10 erwahnt (nichts na-mentlich | |||
[] | |||
Underfull \hbox (badness 10000) in paragraph at lines 24--28 | |||
[] | |||
Underfull \hbox (badness 10000) in paragraph at lines 29--30 | |||
[] | |||
Overfull \hbox (19.66728pt too wide) in paragraph at lines 31--35 | |||
\OT1/cmr/m/n/10 (Auflosung 2 mal 10 hoch mi-nus 2 mm) wird als Ref-erenz fur | |||
die Prazisionsmessungen | |||
[] | |||
Underfull \hbox (badness 10000) in paragraph at lines 31--35 | |||
[] | |||
Underfull \hbox (badness 10000) in paragraph at lines 36--40 | |||
[] | |||
Overfull \hbox (3.33382pt too wide) in paragraph at lines 41--43 | |||
\OT1/cmr/m/n/10 Dann wer-den hier ir-gend-wie zwei simulierte Datensatze gegen | |||
einan-der ver-glichen. | |||
[] | |||
Underfull \hbox (badness 10000) in paragraph at lines 41--43 | |||
[] | |||
[1 | |||
{C:/Users/seyffejn/AppData/Local/MiKTeX/2.9/pdftex/config/pdftex.map}] | |||
Underfull \hbox (badness 10000) in paragraph at lines 44--49 | |||
[] | |||
Underfull \hbox (badness 10000) in paragraph at lines 50--56 | |||
[] | |||
Underfull \hbox (badness 10000) in paragraph at lines 57--58 | |||
[] | |||
Underfull \hbox (badness 10000) in paragraph at lines 59--60 | |||
[] | |||
Underfull \hbox (badness 10000) in paragraph at lines 61--62 | |||
[] | |||
Underfull \hbox (badness 10000) in paragraph at lines 63--78 | |||
[] | |||
[2] [3] [4] (Bachelorarbeit_Seyffer_Julian.bbl [5] [6]) [7] | |||
(Bachelorarbeit_Seyffer_Julian.aux) ) | |||
Here is how much of TeX's memory you used: | |||
1520 strings out of 481212 | |||
20671 string characters out of 2902658 | |||
258210 words of memory out of 3000000 | |||
17158 multiletter control sequences out of 15000+200000 | |||
536347 words of font info for 33 fonts, out of 3000000 for 9000 | |||
1141 hyphenation exceptions out of 8191 | |||
35i,4n,33p,588b,203s stack positions out of 5000i,500n,10000p,200000b,50000s | |||
<C:/Users/seyffejn/AppData/Local/Programs/ | |||
MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmbx10.pfb><C:/Users/seyffejn/AppData | |||
/Local/Programs/MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmbx12.pfb><C:/Users/ | |||
seyffejn/AppData/Local/Programs/MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmr10 | |||
.pfb><C:/Users/seyffejn/AppData/Local/Programs/MiKTeX 2.9/fonts/type1/public/am | |||
sfonts/cm/cmti10.pfb> | |||
Output written on Bachelorarbeit_Seyffer_Julian.pdf (7 pages, 103161 bytes). | |||
PDF statistics: | |||
42 PDF objects out of 1000 (max. 8388607) | |||
0 named destinations out of 1000 (max. 500000) | |||
1 words of extra memory for PDF output out of 10000 (max. 10000000) | |||
@@ -0,0 +1,127 @@ | |||
\documentclass[10pt,a4paper,oneside]{article} | |||
\usepackage[utf8]{inputenc} | |||
\usepackage{amsmath} | |||
\usepackage{amsfonts} | |||
\usepackage{amssymb} | |||
%Zitationsstil | |||
\bibliographystyle{unsrt} | |||
\begin{document} | |||
%Das ist mein erstes Beispiel Zitat | |||
%alles mit dem Tutorial gemacht: https://www.youtube.com/watch?v=GmyCcvXrSDI | |||
\section{Paper von Rafael} | |||
Precision is the ultimate aim of stereotactic technique. Demands on stereotactic precision reach a pinnacle in stereotactic functional neurosurgery.\cite{Zrinzo.2012} \newline | |||
\textbf{Mittels MRT magnetische Marker durch Gefäße navigieren. Könnte problematisch für unser System werden} wenn WEC`s so gesteuert werden. Zeigt welche Magnetfeldstärken im MRT benutzt werden. Weiß nicht ob auch andere Navigationssysteme ähnliche Magnetfeldstärken aufweisen.\cite{Latulippe.2015} \newline | |||
Permanentmagnet an Tubus, der wird in Hals eingeführt und dabei durch Magnetsensoren (die im Patienten als Halsband angezogen werden) getrackt. Hierbei werden zwei mathematische Modelle betrachtet eins davon ist mit einem \textbf{ANN Artificial Neural Network}. \\ | |||
Hier wird ein Paper zitiert, dass zeigen soll wieso Magnetfeld gut ist um Menschen zu durchleuchten (weil permeabilität Gewebe fast wie Luft). Wert wird auf p.135 genannt. \\ | |||
Außerdem werden \textbf{komerziell erhältliche System?} erwähnt (nichts namentlich müsste man selbst recherchieren was es da schon gibt). \\ | |||
Inverse Problem mit magnetic field model for the forward problem einigermaßen gut erklärt. \cite{Sun.07.07.201511.07.2015} \newline | |||
In einen Tumor wird ein kleiner Chip implantiert. Ultraschallsonde in Anus, mit langer Nadel wird Chip (5mm x 5mm)implantiert. Anscheinend wird so ein Verfahren "routinely" in brachytherapy seed implants benutzt. Hier wird schön der \textbf{Zusammenhang dB - Strecke - Frequenz, also wie weit welche Frequenzen durch menschliches Gewebe durchtreten können} aufgezeigt. Höhere Antennenfrequenzen erzeugen mehr inductionsstrom, aber attenuate more through tissue! \cite{Beigel.29thAugust1stSeptember2005} \newline | |||
\textbf{Auch gutes Paper über WECs} | |||
Permanent Magnet erzeugt Feld. Eine WCE (wireless capsule endoscopy)\textbf{ Kapsel hat sechs onboard Sensoren} die das Magnetfeld messen und somit die Position gemessen wird. Ein Roboterarm wird genutzt um die Kapsel herum zu bewegen, die Position des Arms (Auflösung 2 mal 10 hoch minus 2 mm) wird als Referenz für die Präzisionsmessungen genommen. Alle Fehler werden nur in Prozent rel. Fehler angegeben was etwas nervig ist. Laut Introduction kleiner 7mm. \\ | |||
Hier ist außerdem auf S.2 ein \textbf{guter Vergleich mehrerer WCE Tracking Systeme und ihrer Präzision aufgelistet}.\\ | |||
Der Kollege Christian Di Natali hat noch eins zwei gute Papers über induktive Lokalisation in der Medizin und WECs. \cite{DiNatali.2016} \newline | |||
\textbf{Gutes Paper, sehr genaue Hirnchirurgie} \\ | |||
Genau was ich vorhabe! \textbf{Mit Roboterarm in Hirn stechen und position der Spitze ermitteln. | |||
An Spitze sitzt ein Permanentmagnet und auf den Schädel werden mehrere magn. Sensoren aufgeklebt.} | |||
Die Präzision liegt hier zwischen 1 und 4 mm. Allerdings ist der abgedeckte Bereich lediglich 4x4x2cm klein (weiß nicht wie tief man mit max Nadel rein muss). Auch mit Artificial Neural Network die Position errechnen.\cite{Marechal.25.08.201529.08.2015} \newline | |||
Hier werden endoskopische Geräte getrackt.\textbf{ An der Spitze der endosk. wird ein permanent Ringmagnet platziert}. Um die ROI in der getrackt wird ist ein Plexiglaskasten aufgebaut (0.4m x 0.3m x 0.5m) (keine Ahnung wie da durch operiert werden soll) und außen dran werden magnetische Sensoren platziert. \\ | |||
Dann werden hier irgendwie zwei simulierte Datensätze gegeneinander verglichen. Mir fehlt eigentlich der real durch Versuche erzeugte Datensatz. Aber sie erzielen eine Präzision von 0.003mm ohne Noise wohlgesagt!\cite{Song.2014} \newline | |||
\textbf{Das Paper liest sich super und erscheint mir ziemlich professionell.} | |||
\textbf{Ein permanent Magnet in einer endoskopischen Kapsel}, wird von nem Schwein verschluckt. Vier Sensoren die auf einer Platte fest montiert sind, messen dabei das Feld. Die ergebnisse werden (glaub per Zigbee) an einen PC geschickt, der dann die Position ermittelt. | |||
Die Präzision wurde mittels Röntgen verifiziert, wobei hier glaube ich nur 1 Versuch gemacht wurde. | |||
Der Vorteil hier, scheint dass es ein einfaches System ist, nicht so teuer und wenige Sensoren (4). Wobei Prof. Zwanger meinte, dass der Preis kein Argument sein, fast ausschließlich die Präzision und dabei schneidet es nicht besser als die anderen Systeme ab. | |||
Hier ist ne hammer Tabelle drin die mehrere endoskopische Kapsel tracking Systeme in ihrer Präzision vergleicht und den Raum den sie abdecken. \cite{Pham.21.04.201424.04.2014} \newline | |||
\textbf{Super good paper. Looks at a bunch of different methods to track Wireless endoscopic capsules (WEC)} -> see Table 1 (even X-Ray, Gamma-Ray, electromagnetic, etc.) | |||
Looks super professional. Conclusion zeigt aber auch wieso unser System im Bereich WECs strugglen könnte: As shown in the table, the | |||
\textbf{approaches which have potential to obtain high accuracy position | |||
and orientation data are either influenced by the magnetic | |||
field to be used for actuation or be complex and still at the | |||
proof-of-principle stage.} \cite{Than.2012} \newline | |||
Hier wird zum ersten Mal eine \textbf{endoskopische Kapsel aufgezeigt die Biomarker bzw Medikamente mit einem Drug release mechanismus an bestimmter Stelle im Darm ablassen soll}. Hier wird auch ein Bild gezeigt wo der Permanentmagnet in der Kapsel liegen soll. Das sieht nach Platzverbrauch aus, \textbf{wir könnten unsere coils außenrum Wickeln, könnte vom Volumen her sparsamer sein.} \cite{Mehmood.08.10.201209.10.2012} \newline | |||
\textbf{Particle swam optimization (PSO) algorithm} schon öfters gehört. Was ist das? Hier werden mehrere Objekte (Endoskope, Herzklappenprothese und gastrointrnal transit of solid oral dosage forms or nutrients) getrackt. Aber mann muss das ganze in eine Box stellen drum herum sind die Sensoren platziert. Nervig für Arzt.\cite{Yang.2010} \newline | |||
Die folgenden Paper gehen alle über MEG, sind sehr mathematisch und bringen mir wahrscheinlich nichts. \textbf{Brain mapping und Herz mapping. Dafür bräuchten wir glaube ich viel feinere Sensoren (SQUIDs).} \cite{Freschi.2010} \cite{Jiang.12.10.200714.10.2007,Jiang.30.05.200831.05.2008}\cite{Schreiber.2004}\cite{Baillet.2001} \cite{Albera.2008} \cite{Lamus.2007} \newline | |||
Der Kollege hier hat 4 Halls Sensoren die es aufm Markt damals gab zusammen genommen, \textbf{seinen eigenen einfachen "Reader" zusammengeschustert} und einen error in mm range (glaub 1 oder 2mm) bei 40Hz aufnahme Rate bekommen. Real time tracking geht auch so halbwegs. Er meint, dafür bräuchte man 20Hz. | |||
\\ | |||
Achja er trackt einen zyl. permanentmagneten mit durchmesser 8mm und Länge 8mm. | |||
\\ | |||
Könnte ein hilfreiches Paper sein, aber scheint nicht sonderlich professionell (dunno hab die Autoren nicht recherschiert, allein vom Titel und Namen ich sehe keine PHD`s oder Profs). Der Aufbau wirkt auch sehr rudimental. Ich glaube dieses Paper geht davon aus, dass die \textbf{Kapsel allein durch die GI tract movements bewegt} wird und nicht durch Magnetfelder gesteuert wird. Das könnte für uns ein hilfreiches argument sein, sollte man genauer recherchieren wie das sonst abläuft. \cite{Wang.June21252004} \newline | |||
\\ | |||
Mit 8 Antennen (fluxgate magnetometern) einen Permanentmagnet (in Pillenform 2.5cm lang, diameter 0,78cm). In abgeschirmtem Raum (sound proof, ka wie gut das magnetfeld abschirmt). | |||
\\ | |||
Die Studie behauptet in Conclusion, dass sie die erste Studie sei die ein System prüft, dass später potenzielle WEC`s tracken kann. Sie ist aus 1997, könnte also stimmen. | |||
\\ | |||
Es wird nichts über positional oder orientational error gesagt. Der Magnet wird auch an ort und stelle gehalten und lediglich rotiert um eine GI tract mvoement zu simulieren. Anhand der Änderung des Winkels könnte man die Stärke der GI tract movement zurückführen eventuell... | |||
\\ | |||
Coole Idee, uralt, eins der vllt ersten Papers zu diesem Thema? | |||
\textbf{Umgebungsmagnetfeld vorher messen, dann als konstant ansehen und rausrechnen. Das können wir besser mit calibrate} | |||
\cite{Prakash.30Oct.2Nov.1997} | |||
\section{weiterführende Recherche verwandt mit Rafis Papers} | |||
\section{Fragen und Ideen während Literaturrecherche} | |||
\begin{enumerate} | |||
\item Was nehme ich als Referenzwert für die Präzisionsmessung? | |||
\\ - Robot Arm, Infrared System, Paper with grid | |||
\item Could MagPos Project (Oliver) be viable here? | |||
\\- Some paper called active objects in WECs the future | |||
\\- Problematik bei stereotaktischen Eingriffen handling der Instrument eingeschränkt? | |||
\\- WECs bräuchten Stromzufuhr, eventuell Exciter Induktion oder Akku | |||
\\- Endoskopie Instrumente haben sowieso Stromzufuhr für Kameras und Licht, etc. | |||
\item Können wir Schrauben lokalisieren? Welche Frequenz hat welches Material und Schraubengröße? Macht uns Titan (nicht sehr magnetisch) zu große Probleme? Can we track a tooth filling as a kind of built in marker of the patients coordinate system? \\ | |||
- Prof Zwangers Aussage dazu: Man muss auch immer Gewebe drumherum anschauen um zu sehen ob Schraube richtig sitzt, das können wir nicht. Aber gibt es Anwendungen bei denen das umliegende Gewebe nicht so wichtig ist? \\ | |||
Materials being used: \\ | |||
Miniplates have been used during the last decade to | |||
facilitate stability between bony fragments in the | |||
maxillofacial region, and are nowadays the preferred | |||
method for fixation of fractures and osteotomies [1]. | |||
Primarily, stainless steel (Fe-Cr-Ni-Mo alloys) and | |||
titanium (commercially pure Ti) are used as materials | |||
for these derides (Torgersen 1994, Vorsicht zu dem Paper finde ich keine DOI deswegen ists nicht in Citvai und das Paper zitiert diese Stelle wiederum aus einem neuen Paper das ich gar nicht finden kann). \\ | |||
As a new generation of medical metallic material, magnesium (Mg) and its alloys with or without surface | |||
coating have attracted a great deal of attention due to its biodegradability and potential for avoiding a | |||
removal operation. Currently, permanent metals with goodmechanical strengths and biocompatibility, including stainlesssteel (SS), titanium (Ti) alloys and cobalt-chromium (CoCr) alloys,have been widely used in orthopaedicfield \cite{Disegi.2000} \\ | |||
Sixty stainless steel external fixation tapered screwswere used: thirty screws were plasma sprayed with Hydroxyapatite while the others remained uncoated (Orthofix, Bus-solengo, Italy). \cite{Arciola.1999} | |||
\item Könnte man einen Stent tracken und daraus direkt die Position der Vene schließen? | |||
\item Könnten wir Magnetfeld von navigations Systemen die WECs magnetisch bewegen mit unserem calibration rausrechnen? Das wäre ein ziemlicher Vorteil bisheriger Systeme und das ist auch hauptproblem ind loc Systeme von WECs. Aktives Objekt | |||
\item Könnte man schnell Pistolenkugeln tracken und anzeigen wo eventuelle Schrapnelle im Körper befindlich sind? | |||
\item Is a permanent magnet viable? How strong is it? Does it decrease in magnetic field strength over time? | |||
\item Bisherige Papers nehmen oft permanent magnet in eine WEC auf. Das braucht Platz innerhalb der Kapsel. Vielleicht könnten wir sie kleiner machen indem wir unsere Coils außenrum verlegen? | |||
\item What exactly is Particle Swarm Optimization, Artificial Neural Network, Iterative forward model (or something like that, see Paper Number 3 in References)? What mathematical model do we use? Should I even look into that? What exaclty is the electromagnetic inverse problem everyone is talking about? | |||
\item Tracking multiple objects is not done very often. Could we be better than Konkurrenz there? | |||
\item How expensive are SQUID sensors and a magneticely shielded environment? Could that improve our precision? | |||
\\- This is used for brain mapping. Finding the source of a current in the brain. | |||
\item In the whole process should we be mainly looking to improve the sensors (SQUID?), the object (active object) or the exciter (inductive power source for object)? | |||
\item There is research being done to navigate the WEC via a magnetic field. This could interfer with our system, just as every other magnetic localization system. One paper (2001 Wang) suggests that the WEC only gets moved by GI tract movement. Should we care about the magnetic navigation systems of WECs or are they not being used enough? Are WECs even used enough to rechtfertige investigating the localization of them? | |||
\item Only one paper actually measures the surrounding magnetic field (of the earth and just general noise) (1997 Prakash). He measures it, sieht es dann als konstant an und rechnet es raus. Could we do that better or shine with our calibration? | |||
\item Könnte man aus Bewegungsstärke einer WEC Rückschlüsse auf die Stärke der GI tract Bewegungen schließen? Bringt das überhaupt medizinisch etwas? | |||
\end{enumerate} | |||
%hier wird das Literaturverzeichnis mit Citavi erstellt | |||
\bibliography{Literatur} | |||
\end{document} |
@@ -0,0 +1,392 @@ | |||
% This file was created with Citavi 6.5.0.0 | |||
@proceedings{.07.07.201511.07.2015, | |||
year = {07.07.2015 - 11.07.2015}, | |||
title = {2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4673-9107-8} | |||
} | |||
@proceedings{.08.10.201209.10.2012, | |||
year = {08.10.2012 - 09.10.2012}, | |||
title = {2012 International Conference on Emerging Technologies}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4673-4451-7} | |||
} | |||
@proceedings{.12.10.200714.10.2007, | |||
year = {12.10.2007 - 14.10.2007}, | |||
title = {2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4244-0948-8} | |||
} | |||
@proceedings{.21.04.201424.04.2014, | |||
year = {21.04.2014 - 24.04.2014}, | |||
title = {2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4799-2843-9} | |||
} | |||
@proceedings{.25.08.201529.08.2015, | |||
year = {25.08.2015 - 29.08.2015}, | |||
title = {2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4244-9271-8} | |||
} | |||
@proceedings{.29thAugust1stSeptember2005, | |||
year = {29th August - 1st September 2005}, | |||
title = {Proceedings of the 2005 European Conference on Circuit Theory and Design, 2005}, | |||
publisher = {IEEE}, | |||
isbn = {0-7803-9066-0} | |||
} | |||
@proceedings{.30.05.200831.05.2008, | |||
year = {30.05.2008 - 31.05.2008}, | |||
title = {2008 International Conference on Technology and Applications in Biomedicine}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4244-2254-8} | |||
} | |||
@proceedings{.30Oct.2Nov.1997, | |||
year = {30 Oct.-2 Nov. 1997}, | |||
title = {Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)}, | |||
publisher = {IEEE}, | |||
isbn = {0-7803-4262-3} | |||
} | |||
@proceedings{.June21252004, | |||
year = {June 21-25,2004}, | |||
title = {International Conference on Information Acquisition, 2004. Proceedings}, | |||
publisher = {IEEE}, | |||
isbn = {0-7803-8629-9} | |||
} | |||
@article{Albera.2008, | |||
abstract = {In this paper, a high-resolution method for solving potentially ill-posed inverse problems is proposed. This method named FO-D-MUSIC allows for localization of brain current sources with unconstrained orientations from surface electroencephalographic (EEG) or magnetoencephalographic (MEG) data using spherical or realistic head geometries. The FO-D-MUSIC method is based on the following: 1) the separability of the data transfer matrix as a function of location and orientation parameters, 2) the fourth-order (FO) virtual array theory, and 3) the deflation concept extended to FO statistics accounting for the presence of potentially but not completely statistically dependent sources. Computer results display the superiority of the FO-D-MUSIC approach in different situations (very closed sources, small number of electrodes, additive Gaussian noise with unknown spatial covariance, etc.) compared to classical algorithms.}, | |||
author = {Albera, Laurent and Ferr{\'e}ol, Anne and Cosandier-Rim{\'e}l{\'e}, Delphine and Merlet, Isabelle and Wendling, Fabrice}, | |||
year = {2008}, | |||
title = {Brain source localization using a fourth-order deflation scheme}, | |||
pages = {490--501}, | |||
volume = {55}, | |||
number = {2 Pt 1}, | |||
journal = {IEEE transactions on bio-medical engineering}, | |||
doi = {10.1109/TBME.2007.905408}, | |||
file = {http://www.ncbi.nlm.nih.gov/pubmed/18269984}, | |||
file = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267684} | |||
} | |||
@article{Arciola.1999, | |||
author = {Arciola, Carla Renata and Montanaro, Lucio and Moroni, Antonio and Giordano, Michele and Pizzoferrato, Arturo and Donati, Maria Elena}, | |||
year = {1999}, | |||
title = {Hydroxyapatite-coated orthopaedic screws as infection resistant materials: in vitro study}, | |||
pages = {323--327}, | |||
volume = {20}, | |||
number = {4}, | |||
issn = {01429612}, | |||
journal = {Biomaterials}, | |||
doi = {10.1016/S0142-9612(98)00168-9} | |||
} | |||
@article{Baillet.2001, | |||
author = {Baillet, S. and Mosher, J. C. and Leahy, R. M.}, | |||
year = {2001}, | |||
title = {Electromagnetic brain mapping}, | |||
pages = {14--30}, | |||
volume = {18}, | |||
number = {6}, | |||
issn = {10535888}, | |||
journal = {IEEE Signal Processing Magazine}, | |||
doi = {10.1109/79.962275} | |||
} | |||
@inproceedings{Beigel.29thAugust1stSeptember2005, | |||
author = {Beigel, M. and McGary, J.}, | |||
title = {Accurate, real-time localization of subminiature inductive transponders: tumor localization as an example}, | |||
pages = {173--176}, | |||
publisher = {IEEE}, | |||
isbn = {0-7803-9066-0}, | |||
booktitle = {Proceedings of the 2005 European Conference on Circuit Theory and Design, 2005}, | |||
year = {29th August - 1st September 2005}, | |||
doi = {10.1109/ECCTD.2005.1523021}, | |||
file = {http://ieeexplore.ieee.org/document/1523021/} | |||
} | |||
@article{Carpi.2010, | |||
author = {Carpi, Federico}, | |||
year = {2010}, | |||
title = {Magnetic capsule endoscopy: the future is around the corner}, | |||
pages = {161--164}, | |||
volume = {7}, | |||
number = {2}, | |||
journal = {Expert review of medical devices}, | |||
doi = {10.1586/erd.10.3}, | |||
file = {http://www.ncbi.nlm.nih.gov/pubmed/20214420} | |||
} | |||
@article{DiNatali.2016, | |||
author = {{Di Natali}, Christian and Beccani, Marco and Simaan, Nabil and Valdastri, Pietro}, | |||
year = {2016}, | |||
title = {Jacobian-Based Iterative Method for Magnetic Localization in Robotic Capsule Endoscopy}, | |||
pages = {327--338}, | |||
volume = {32}, | |||
number = {2}, | |||
issn = {1552-3098}, | |||
journal = {IEEE Transactions on Robotics}, | |||
doi = {10.1109/TRO.2016.2522433} | |||
} | |||
@article{Disegi.2000, | |||
author = {Disegi, J. A. and Eschbach, L.}, | |||
year = {2000}, | |||
title = {Stainless steel in bone surgery}, | |||
pages = {D2-D6}, | |||
volume = {31}, | |||
issn = {00201383}, | |||
journal = {Injury}, | |||
doi = {10.1016/S0020-1383(00)80015-7} | |||
} | |||
@article{Freschi.2010, | |||
author = {Freschi, Fabio}, | |||
year = {2010}, | |||
title = {Localization of Sources of Brain Activity: A MILP Approach}, | |||
pages = {3429--3432}, | |||
volume = {46}, | |||
number = {8}, | |||
issn = {0018-9464}, | |||
journal = {IEEE Transactions on Magnetics}, | |||
doi = {10.1109/TMAG.2010.2044155} | |||
} | |||
@article{Guo.2011, | |||
author = {Guo, Xudong and Wang, Cheng and Yan, Rongguo}, | |||
year = {2011}, | |||
title = {An electromagnetic localization method for medical micro-devices based on adaptive particle swarm optimization with neighborhood search}, | |||
pages = {852--858}, | |||
volume = {44}, | |||
number = {5}, | |||
issn = {02632241}, | |||
journal = {Measurement}, | |||
doi = {10.1016/j.measurement.2011.01.022} | |||
} | |||
@inproceedings{Jiang.12.10.200714.10.2007, | |||
author = {Jiang, Shiqin and Chi, Ming and Zhang, Lei and Luo, Ming and Wang, Lemin}, | |||
title = {Dipole Source Localization in Magnetocardiography}, | |||
pages = {320--322}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4244-0948-8}, | |||
booktitle = {2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging}, | |||
year = {12.10.2007 - 14.10.2007}, | |||
doi = {10.1109/NFSI-ICFBI.2007.4387764}, | |||
file = {http://ieeexplore.ieee.org/document/4387764/} | |||
} | |||
@inproceedings{Jiang.30.05.200831.05.2008, | |||
author = {Jiang, Shiqin and Dong, Jiaming and Chi, Ming and Wang, Weiyuan}, | |||
title = {Graphical model for the cardiac multi-dipole sources}, | |||
pages = {434--436}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4244-2254-8}, | |||
booktitle = {2008 International Conference on Technology and Applications in Biomedicine}, | |||
year = {30.05.2008 - 31.05.2008}, | |||
doi = {10.1109/ITAB.2008.4570632}, | |||
file = {http://ieeexplore.ieee.org/document/4570632/} | |||
} | |||
@article{Lamus.2007, | |||
abstract = {Dynamic estimation methods based on linear state-space models have been applied to the inverse problem of magnetoencephalography (MEG), and can improve source localization compared with static methods by incorporating temporal continuity as a constraint. The efficacy of these methods is influenced by how well the state-space model approximates the dynamics of the underlying brain current sources. While some components of the state-space model can be inferred from brain anatomy and knowledge of the MEG instrument noise structure, parameters governing the temporal evolution of underlying current sources are unknown and must be selected on an ad-hoc basis or estimated from data. In this work, we apply the Expectation-Maximization (EM) algorithm to estimate parameters and sources in an MEG state-space model, and demonstrate in simulation studies that the resulting source estimates are superior to those provided by static methods or dynamic methods employing ad hoc parameter selection.}, | |||
author = {Lamus, C. and Long, C. J. and H{\"a}m{\"a}l{\"a}inen, M. S. and Brown, E. N. and Purdon, P. L.}, | |||
year = {2007}, | |||
title = {PARAMETER ESTIMATION AND DYNAMIC SOURCE LOCALIZATION FOR THE MAGNETOENCEPHALOGRAPHY (MEG) INVERSE PROBLEM}, | |||
pages = {1092--1095}, | |||
volume = {2007}, | |||
issn = {1945-7928}, | |||
journal = {Proceedings. IEEE International Symposium on Biomedical Imaging}, | |||
doi = {10.1109/ISBI.2007.357046}, | |||
file = {http://www.ncbi.nlm.nih.gov/pubmed/20407591}, | |||
file = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855975} | |||
} | |||
@article{Latulippe.2015, | |||
author = {Latulippe, Maxime and Martel, Sylvain}, | |||
year = {2015}, | |||
title = {Dipole Field Navigation: Theory and Proof of Concept}, | |||
pages = {1353--1363}, | |||
volume = {31}, | |||
number = {6}, | |||
issn = {1552-3098}, | |||
journal = {IEEE Transactions on Robotics}, | |||
doi = {10.1109/TRO.2015.2489518} | |||
} | |||
@inproceedings{Marechal.25.08.201529.08.2015, | |||
author = {Marechal, Luc and Foong, Shaohui and Sun, Zhenglong and Wood, Kristin L.}, | |||
title = {Design optimization of the sensor spatial arrangement in a direct magnetic field-based localization system for medical applications}, | |||
pages = {897--900}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4244-9271-8}, | |||
booktitle = {2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)}, | |||
year = {25.08.2015 - 29.08.2015}, | |||
doi = {10.1109/EMBC.2015.7318507}, | |||
file = {https://ieeexplore.ieee.org/document/7318507/} | |||
} | |||
@inproceedings{Mehmood.08.10.201209.10.2012, | |||
author = {Mehmood, Nasir and Aziz, Syed Mahfuzul}, | |||
title = {Magnetic sensing technology for in vivo tracking}, | |||
pages = {1--4}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4673-4451-7}, | |||
booktitle = {2012 International Conference on Emerging Technologies}, | |||
year = {08.10.2012 - 09.10.2012}, | |||
doi = {10.1109/ICET.2012.6375423}, | |||
file = {http://ieeexplore.ieee.org/document/6375423/} | |||
} | |||
@inproceedings{Pham.21.04.201424.04.2014, | |||
author = {Pham, Duc Minh and Aziz, Syed Mahfuzul}, | |||
title = {A real-time localization system for an endoscopic capsule}, | |||
pages = {1--6}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4799-2843-9}, | |||
booktitle = {2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)}, | |||
year = {21.04.2014 - 24.04.2014}, | |||
doi = {10.1109/ISSNIP.2014.6827653}, | |||
file = {http://ieeexplore.ieee.org/document/6827653/} | |||
} | |||
@inproceedings{Prakash.30Oct.2Nov.1997, | |||
author = {Prakash, N. M. and Spelman, F. A.}, | |||
title = {Localization of a magnetic marker for GI motility studies: an in vitro feasibility study}, | |||
pages = {2394--2397}, | |||
publisher = {IEEE}, | |||
isbn = {0-7803-4262-3}, | |||
booktitle = {Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136)}, | |||
year = {30 Oct.-2 Nov. 1997}, | |||
doi = {10.1109/IEMBS.1997.756802}, | |||
file = {http://ieeexplore.ieee.org/document/756802/} | |||
} | |||
@article{Schreiber.2004, | |||
author = {Schreiber, J. and Haueisen, J. and Nenonen, J.}, | |||
year = {2004}, | |||
title = {A New Method for Choosing the Regularization Parameter in Time-Dependent Inverse Problems and Its Application to Magnetocardiography}, | |||
pages = {1104--1107}, | |||
volume = {40}, | |||
number = {2}, | |||
issn = {0018-9464}, | |||
journal = {IEEE Transactions on Magnetics}, | |||
doi = {10.1109/TMAG.2004.824813} | |||
} | |||
@article{Song.2014, | |||
author = {Song, Shuang and Li, Baopu and Qiao, Wan and Hu, Chao and Ren, Hongliang and Yu, Haoyong and Zhang, Qi and Meng, Max Q.-H. and Xu, Guoqing}, | |||
year = {2014}, | |||
title = {6-D Magnetic Localization and Orientation Method for an Annular Magnet Based on a Closed-Form Analytical Model}, | |||
pages = {1--11}, | |||
volume = {50}, | |||
number = {9}, | |||
issn = {0018-9464}, | |||
journal = {IEEE Transactions on Magnetics}, | |||
doi = {10.1109/TMAG.2014.2315592} | |||
} | |||
@inproceedings{Sun.07.07.201511.07.2015, | |||
author = {Sun, Zhenglong and Foong, Shaohui and Marechal, Luc and Teo, Tee Hui and Tan, U-Xuan and Shabbir, Asim}, | |||
title = {Using heterogeneous sensory measurements in a compliant magnetic localization system for medical intervention}, | |||
pages = {133--138}, | |||
publisher = {IEEE}, | |||
isbn = {978-1-4673-9107-8}, | |||
booktitle = {2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)}, | |||
year = {07.07.2015 - 11.07.2015}, | |||
doi = {10.1109/AIM.2015.7222521}, | |||
file = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7222521} | |||
} | |||
@article{Than.2012, | |||
abstract = {Obscure gastrointestinal (GI) bleeding, Crohn disease, Celiac disease, small bower tumors, and other disorders that occur in the GI tract have always been challenging to be diagnosed and treated due to the inevitable difficulty in accessing such a complex environment within the human body. With the invention of wireless capsule endoscope, the next generation of the traditional cabled endoscope, not only a dream has come true for the patients who have experienced a great discomfort and unpleasantness caused by the conventional endoscopic method, but also a new research field has been opened to develop a complete miniature robotic device that is swallowable and has full functions of diagnosis and treatment of the GI diseases. However, such an ideal device needs to be equipped with a highly accurate localization system to be able to exactly determine the location of lesions in the GI tract and provide essential feedback to an actuation mechanism controlling the device's movement. This paper presents a comprehensive overview of the localization systems for robotic endoscopic capsules, for which the motivation, challenges, and possible solutions of the proposed localization methods are also discussed.}, | |||
author = {Than, Trung Duc and Alici, Gursel and Zhou, Hao and Li, Weihua}, | |||
year = {2012}, | |||
title = {A review of localization systems for robotic endoscopic capsules}, | |||
pages = {2387--2399}, | |||
volume = {59}, | |||
number = {9}, | |||
journal = {IEEE transactions on bio-medical engineering}, | |||
doi = {10.1109/TBME.2012.2201715}, | |||
file = {http://www.ncbi.nlm.nih.gov/pubmed/22736628} | |||
} | |||
@inproceedings{Wang.June21252004, | |||
author = {Wang, Xiaona and Meng, M.Q.-H. and Chan, Yawen}, | |||
title = {A low-cost tracking method based on magnetic marker for capsule endoscope}, | |||
pages = {524--526}, | |||
publisher = {IEEE}, | |||
isbn = {0-7803-8629-9}, | |||
booktitle = {International Conference on Information Acquisition, 2004. Proceedings}, | |||
year = {June 21-25,2004}, | |||
doi = {10.1109/ICIA.2004.1373426}, | |||
file = {http://ieeexplore.ieee.org/document/1373426/} | |||
} | |||
@article{Yang.2010, | |||
author = {Yang, Wan'an and Hu, Chao and Li, Mao and Meng, Max Q.-H. and Song, Shuang}, | |||
year = {2010}, | |||
title = {A New Tracking System for Three Magnetic Objectives}, | |||
pages = {4023--4029}, | |||
volume = {46}, | |||
number = {12}, | |||
issn = {0018-9464}, | |||
journal = {IEEE Transactions on Magnetics}, | |||
doi = {10.1109/TMAG.2010.2076823} | |||
} | |||
@article{Zrinzo.2012, | |||
abstract = {Precision is the ultimate aim of stereotactic technique. Demands on stereotactic precision reach a pinnacle in stereotactic functional neurosurgery. Pitfalls are best avoided by possessing in-depth knowledge of the techniques employed and the equipment used. The engineering principles of arc-centered stereotactic frames maximize surgical precision at the target, irrespective of the surgical trajectory, and provide the greatest degree of surgical precision in current clinical practice. Stereotactic magnetic resonance imaging (MRI) provides a method of visualizing intracranial structures and fiducial markers on the same image without introducing significant errors during an image fusion process. Although image distortion may potentially limit the utility of stereotactic MRI, near-complete distortion correction can be reliably achieved with modern machines. Precision is dependent on minimizing errors at every step of the stereotactic procedure. These steps are considered in turn and include frame application, image acquisition, image manipulation, surgical planning of target and trajectory, patient positioning and the surgical procedure itself. Audit is essential to monitor and improve performance in clinical practice. The level of stereotactic precision is best analyzed by routine postoperative stereotactic MRI. This allows the stereotactic and anatomical location of the intervention to be compared with the anatomy and coordinates of the intended target, avoiding significant image fusion errors.}, | |||
author = {Zrinzo, Ludvic}, | |||
year = {2012}, | |||
title = {Pitfalls in precision stereotactic surgery}, | |||
pages = {S53-61}, | |||
volume = {3}, | |||
number = {Suppl 1}, | |||
journal = {Surgical neurology international}, | |||
doi = {10.4103/2152-7806.91612}, | |||
file = {http://www.ncbi.nlm.nih.gov/pubmed/22826812}, | |||
file = {https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400482} | |||
} | |||
@@ -0,0 +1,8 @@ | |||
https://link.springer.com/chapter/10.1007/978-3-030-01364-6_19 | |||
Just look at the References of this link. | |||
Maybe rather look at this one (first Reference of top link): | |||
https://www.sciencedirect.com/science/article/pii/S1361841516301657 | |||
It says it has a comparison of 24 recent papers about surgical tool detection |
@@ -0,0 +1,3 @@ | |||
# Default ignored files | |||
/shelf/ | |||
/workspace.xml |
@@ -0,0 +1,10 @@ | |||
<?xml version="1.0" encoding="UTF-8"?> | |||
<module type="PYTHON_MODULE" version="4"> | |||
<component name="NewModuleRootManager"> | |||
<content url="file://$MODULE_DIR$"> | |||
<excludeFolder url="file://$MODULE_DIR$/venv" /> | |||
</content> | |||
<orderEntry type="jdk" jdkName="Python 3.6" jdkType="Python SDK" /> | |||
<orderEntry type="sourceFolder" forTests="false" /> | |||
</component> | |||
</module> |
@@ -0,0 +1,6 @@ | |||
<component name="InspectionProjectProfileManager"> | |||
<settings> | |||
<option name="USE_PROJECT_PROFILE" value="false" /> | |||
<version value="1.0" /> | |||
</settings> | |||
</component> |
@@ -0,0 +1,4 @@ | |||
<?xml version="1.0" encoding="UTF-8"?> | |||
<project version="4"> | |||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.6" project-jdk-type="Python SDK" /> | |||
</project> |
@@ -0,0 +1,8 @@ | |||
<?xml version="1.0" encoding="UTF-8"?> | |||
<project version="4"> | |||
<component name="ProjectModuleManager"> | |||
<modules> | |||
<module fileurl="file://$PROJECT_DIR$/.idea/PyPrecisionGUI.iml" filepath="$PROJECT_DIR$/.idea/PyPrecisionGUI.iml" /> | |||
</modules> | |||
</component> | |||
</project> |