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Abstract

There are various factors that influence the accuracy of magnetic field based localization
systems. Some of those are geometrical imperfections, noise, man-made disturbing signals,
deformation of the object to be localized or permeable and conducting obstacles near the sys-
tem. Furthermore, a badly designed model can be a source of imprecision for model based
localization. In this master thesis, some of the aforementioned factors will be investigated
and their effect on the system’s estimation accuracy of an object’s position will be quantified.
This will be achieved by the means of Monte-Carlo based simulations, Cramer-Rao lower
bound calculations and analytic approaches.

Keywords— Magnetic field, localization, Cramer-Rao lower bound (CRLB), Monte-Carlo
(MC) simulations, modeling.
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1. Introduction

In recent years the number of applications that demand an object to be localized has increased
dramatically. Ranging from smart homes objects to industrial and medical applications. Dif-
ferent localization methods exist such as the global positioning system and the cellular hand-
sets. However, these methods have some disadvantages such as low localization accuracy,
calculations complexity and long processing time [1]. On the contrary, low frequency mag-
netic field localization methods have higher accuracy, higher penetration ability to different
materials and lower calculations complexity [1].
Nowadays, there are various applications for magnetic field based localization. Such as
finding a robot position in a warehouse or a factory in which magnetic field sensors can be
mounted on the ceiling or buried underground [1]. The robot position can be estimated by
analyzing the magnetic coupling model between the sensors and the embeded coils inside
the robot.
In medicine, it is used to track the position of a capsule endoscope within the gastrointesti-
nal tract of the human body [2]. The capsule is equibed with a magnet and the postion of
the capsule can be tracked by a magnetic sensor network that measures the flux from this
magnet. In sports, magnetic localization is used to provide a clear indication to the referee
whether the ball has fully crossed the goal line during football matches [3]. Loop coils are
embedded inside the ball and coupled with the magnetic field produced by an AC current
source. The goal can be detected by running real time algorithms on the measured data from
different magnetic sensors mounted around the goal frame. Each one of the aforementioned
applications requires a certain localization accuracy level but all of them do suffer from sev-
eral disturbing influences.
Figure 1.1 illustrates the structure and components of a magnetic localization system.

Figure 1.1.: Magnetic field localization system components
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Magnetic field based localization systems consist of several components. Although each one
of these components is necessary to perform a successful localization, they could limit the
system localization accuracy with different amounts. Additionally, the localization process
is exposed to different environments which means that external factors must be considered
and analyzed to limit their effects on the system accuracy.
As can be seen in Figure 1.1, different applications share the same system parameters and
they can be disturbed by several external influences such as man made signals or noise. For
each application a different localization algorithm is used to analyze the sensed data and to
estimate a position for the object.

In this work I am investigating different disturbing influences in order to qualify and quantify
their effects on the localization accuracy. This work will be based on magnetic localization
of a passive object. The outcomes of this thesis will help to build a better understanding
of how a certain influence affects the accuracy level of a given application. Furthermore,
such outcomes can help in defining a theoretical accuracy limit given a specific sensors
constellation and a set of other parameters values.
The thesis is structured as following, in the next chapter the necessary theoretical background
for magnetic localization will be provided. Afterwards, I will explain how the magnetic
localization works in principle. Then, I will give an overview about the simulation tool which
will be used to configure and simulate different localization setups. The first application to
be investigated will be about the 1-D localization which is used for goal detection in football.
Different parameters will be investigated and an accuracy limit will be defined using Cramer
Rao lower bound calculations. Then, I will proceed to 2-D localization in which the noise
effect on the localization accuracy will be investigated using the means of Monte Carlo
simulations.
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2. Theoretical Background

In this chapter, the necessary theoretical background, which forms the foundation of mag-
netic field based localization, is presented. Each of the following sections includes a brief
descriptive overview which is necessary to understand how the localization is done. Addi-
tionally, this will be used to perform the upcoming simulations during the next chapters.

2.1. Biot-Savart Law

According to [4], the magnetic field density of a steady line current is given by the Biot-
Savart law:

~B(r) =
µ0

4π

∫
I × ~r
r2

~dl =
µ0

4π
I

∫ ~dl × ~r
r2

(2.1)

Where B is the magnetic flux density measured in tesla [T ], the integration is along the
direction of the current flow, ~dl is an element of length along the wire, ~r is the vector from
the element of length to the point r (Figure 2.1), I is the current in Amperes and µ0= 4π ×
10−7 V.s

A.m
is the permeability of free space.

Figure 2.1.: Biot-Savart law illustration [4]

and the vector potential ~A produced by this steady current at point r

~A(r) =
µ0

4π

∮
a

1

r
~dl (2.2)
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2.2. Faraday’s Law

"If the magnetic flux through a coiled conductor changes, a voltage proportional to the rate
of change of the flux is generated between its leads" ([7], p. 632), and according to [4] this
is described by Faraday’s law in it’s integral form:

ui =

∮
~E · ~dl = −dΦ(t)

dt
(2.3)

where ui is the induced voltage in the conductor loop, ~E is the electric field and Φ is the
magnetic flux. For a magnetic field ~B(t) passing perpendicular a circular area (Figure 2.2) if

Figure 2.2.: Faraday’s law illustration

B is increasing, E runs clockwise, and the magnetic flux through that area can be calculated
by

Φ =

∫
a

~B · ~da (2.4)

and from (2.3), the induced voltage in the loop will be

ui = − ∂

∂t

∫
a

~B · ~da (2.5)

The magnetic field density is related to the vector potential by∫
a

~B · ~da =

∮
∂a

~A · ~dl (2.6)

then from (2.4), Φ can be written as

Φ =

∮
~A · ~dl (2.7)

Finally, the induced voltage is

ui = − ∂

∂t

∮
~A · ~dl (2.8)
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3. Localization System

In this chapter, an overview is given about the used magnetic field based localization system.
Also, a brief description about its components and their functions will be provided.

3.1. Localization System Components

As shown in Figure 3.1 , the localization system consists of four main blocks :

Figure 3.1.: Localization system block diagram

1. Localization environment: it consists of the following elements

• Primary magnetic field source (AC current in an exciter wire that surrounds the
localization area)

• Localization object (with one or more coils embedded, each coil made of n-
windings, each coil is named after the orientation of it’s normal vector as il-
lustrated in Figure 3.2)

• Magnetic field sensors (rectangular loops made of N-windings)

• Localization area’s medium (air with permeability of µ0)

Figure 3.3 illustrates one possibility of how these elements can be setup together.

2. AC current generator: it generates an AC current into the exciter wire that produces
the primary magnetic field necessary for localization. The magnitude of the current
can be adjusted by the host system through the reader.

3. Reader: it converts the analog measured voltages from the magnetic sensors into
digital data-grams and send them to the host system through an ethernet link. The
reader’s sampling rate and other parameters can be adjusted from the host system via
configuration commands.

15



Figure 3.2.: Coils’ naming illustration

4. Host system PC: it contains the necessary software modules written in Python which
perform further processing steps on the received data from the reader. That makes them
easier to be used for different applications and for visualization purposes. The host
system can send configuration commands to the reader and the AC current generator.

Figure 3.3.: Localization environment’s elements

3.2. Localization Principle

Although The localization system can be configured to suit different applications, all of
them share the same localization principle.The localization principle can be described as
following:

16



• The flow of the current into the exciter wire is associated with a primary time-variant
magnetic field

• Primary magnetic flux passes through the localization object’s coil(s)’ area

• According to 2.3 and 2.5, voltage is induced and current flows in the object’s coil(s)

• The object’s current flow is associated with a secondary time-variant magnetic field

• The secondary magnetic flux passes through the magnetic sensor(s)’s area

• According to 2.3 and 2.5, voltage is induced in each sensor

• A localization algorithm is then applied to compare the measured induced voltage(s)
in each sensor with reference values for localization purposes

• The object’s location is estimated

17



4. Simulation Tool

During this thesis I am using a simulation tool which was developed completely in Python
by a colleague here at Fraunhofer-IIS. This tool was built to perform simulations and inves-
tigations on the localization system. As illustrated in Figure 4.1, this simulation tool consists
of one class, a number of sub-classes and configuration files for different localization appli-
cations.
class Conductor and its sub-classes can be used to create a localization object with elliptical
or polygon coils’ shapes.

Figure 4.1.: Simulation tool components illustration

config_Application.py allows to create localization setups with different sensors constel-
lations and configuration parameters such as the shape of the exciter wire, the AC current
value, the sensors’ sizes and the number of windings of the object’s coils.
The desired object’s position and orientation can be configured in config_Fingerprinting_table.py.
After running start_Fingerprinting_table.py, the simulated induced voltage values are ex-
ported as a .csv Excel file.

18



5. Disturbing Influences

The localization system under investigation suffers from several disturbing influences. Such
influences will not allow a 100 % accurate localization. These influences can be either inter-
nal or external. The internal ones come from the system’s imperfections. The external ones
arise from the surrounding environment.
In this chapter, some of these disturbing influences are listed and a brief description is pro-
vided.

5.1. Internal Influences

Some of the internal influences are

• Magnitude of the AC current in the exciter wire: affects directly the magnitude of the
primary magnetic field density and the induced voltage in the object coils.

• Shape and position of the exciter wire: affect the localization area dimensions in which
the localization is being carried out.

• Shape and orientation of the object’s coil(s): affect the amount and direction of the
secondary magnetic flux.

• Number of windings of the Object’s coil(s): affects the amount of the secondary mag-
netic flux.

• Shape and orientation of the magnetic field sensors: affect the magnitude of the in-
duced voltage in the sensors.

• Constellation of the magnetic field sensors: affect the localization accuracy.

• Thermal noise from the voltage read-out electronics: affects the localization accuracy.

5.2. External Influences

• Geometrical deformations of the localization object: affect the amount, direction of
the secondary magnetic flux and the object’s coil(s) frequency response.

• Displacement of the sensors or the exciter wire due to external forces: affect the local-
ization area dimensions in which the localization is being carried out.

• Additive white noise from near-by operating electronic devices: affects the localization
accuracy.
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• Presence of other objects with different magnetic permeability factors near the local-
ization’s area: affects the observed magnetic field density by the object.

• Magnetic fields from near-by AC current cables: affect the primary an the secondary
magnetic fields that are used for localization.

20



6. 1-D Localization

One important application of magnetic field localization is to estimate a 1-D position of an
object. Such an application can be simplified to detect whether an object has passed a specific
position or not. For example, it can be used during sport events to detect goals accurately
and eliminate false goal decisions. GoalRef is a magnetic field based localization system
which was developed at Fraunhofer IIS for professional football leagues. It performs 1-D
localization to detect goal events.
In this chapter, the goal detection process will be presented, and the selected disturbing
influences of chapter 5 will be investigated.

6.1. Goal Detection

Let us consider the setup in Figure 6.1 which consists of the following:

• One magnetic field sensor in the xz-plane.

• An exciter wire passing through the middle of the magnetic sensor’s loop and carrying
an AC current.

• Ball object with only one embedded z-coil.

Figure 6.1.: 1-D localization setup
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When the ball object starts approaching the localization setup from the negative z-direction
towards the positive z-direction, the following occurs:

• Primary magnetic flux passes through the ball coil area.

• Voltage is induced in the ball coil and current flow in the coil is established.

• The current develops a secondary magnetic field.

• The secondary magnetic flux passes through the sensor area.

• Voltage is induced in the sensor.

Before ball position 1 in Figure 6.2a, the induced voltage in the sensors’ coil starts increasing
as the ball gets closer to xy-plane till it reaches a maximum value exactly at position number
1 (Figure 6.2b). At position number 2 in Figure 6.2a, no magnetic flux passes through the
sensor area and U0 = 0V.
Afterwards, the ball moves towards position 3 and the induced voltage starts reversing its
polarity till it reaches a negative minimum value at position number 3 in Figure 6.2b.

(a)
(b)

Figure 6.2.: (a) Ball at different z-positions (b) The sensor’s measured voltage

From Figure 6.1 and 6.2, the xy-plane is considered as the goal plane and the z = 0 m as
the goal line. As a result a goal event can be detected and declared by tracking the induced
voltage in the magnetic sensor until its polarity changes when crossing the zero V value.
Algorithm 1 describes how a goal event is detected. It takes the sensor’s induced voltage
values as an input. Then a for loop runs over the length of the input values with a condition
at line 4. This condition detects the voltage zero crossing by comparing the sign of two
successive voltage values. If the sign of two successive values are different, a goal event is
declared in line 5, and if not, the loop continue running.

Algorithm 1 Goal detection
1: Input: Induced voltage in the sensor Uind
2: for i in range (0,len(Uind)-1) do
3: buffer = Uind[i]
4: if sign(buffer) ! = sign(Uind[i+ 1]) then
5: Declare a goal event
6: break;
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Using the simulation tool described in Chapter 4, the induced voltage curves of Figure 6.3a
were simulated. Each curve represents the induced voltage in the sensor for a ball object
placed at a certain (x,y)-point and moving along the z-axis.
For example, Figure 6.3b shows the object’s positions in the xy-plane that induced the volt-
age curves number 1 and 2 in Figure 6.3a.

(a) The simulated induced voltage curves for an object at different
(x,y)-positions

(b) The simulated (x,y)-grid
and the corresponding
object’s (x,y)-position
for curve number 1 and
2 in Figure 6.3a

Figure 6.3.: Induced voltage curves

6.2. Influences on Goal Detection Accuracy

During this section, the following influences are investigated:

• Constellation of the magnetic field sensors.

• Position of the exciter wire.

• Orientation of the sensors.

• Thermal noise effect.

6.2.1. Number of Sensors

I will investigate the influence of the number of sensors on the goal detection accuracy while
considering the noise effects. The simulation tool is used to configure the used sensors’
dimensions. Then, an object is simulated which moves along the z-axis for a grid of (x,y)
positions. For each (x,y,z) position, an induced voltage value is calculated. Afterwards, the
noise effect is simulated as following

Usim

∣∣∣∣
x,y,z

= Uind

∣∣∣∣
x,y,z

+ w (6.1)
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Where Usim is the simulated voltage value including noise for a certain object position, Uind
is the calculated induced voltage value using the simulation tool for a certain (x,y,z)-point,
w is an independent random noise sample. During this thesis, White Gaussian Noise (WGN)
is used to simulate the noise effect with the following Probability Density Function (PDF)

f(w;µ) =
1√

2πσ2
exp
−(w − µ)2

2σ2
(6.2)

Where µ is the mean of the random variable w and σ2 is its variance. Figure 6.4 illustrates
the PDF of (6.2) for µ = 0 V and σ2 = 1 V2. The standard deviation σ value represents the
uncertainty in the random variable w.

Figure 6.4.: PDF for a Gaussian distribution with µ = 0 V and σ2 = 1 V2

Algorithm 1 will be used to detect the zero crossings for goal events. It takes the Usim voltage
values as an input to consider the noise effect.
For the first simulation, one magnetic field sensor is used. The simulation setup parameters
are shown in Figure 6.5b. The exciter wire passes exactly through the sensors’ loop to get
a theoretical voltage zero crossing at z = 0 m exactly. Using this fact, the error in the goal
decision can be defined as following

error = zdetected − ztheoritical (6.3)

where error is measured in meters, zdetected is the z-position of the ball at which a zero cross-
ing where detected using Algorithm 1, ztheoritical is the aforementioned theoretical position
at z = 0 m where the zero crossing occurs.
The used magnetic sensor has a 50×4 cm2 rectangular loop. WGN of µ = 0 V and σ = 10−6

V will be used for the noise samples w calculations. Figure 6.5a illustrates the resulting dis-
tribution of the induced voltage zero crossing positions over the xy-goal plane.
A 0.03 mm error of this setup means that the zero crossing and hence the goal decision
occurred 0.03 mm after the object has passed the theoretical goal line at z = 0 m. The maxi-
mum error value is −0.99 mm which means that the goal decision occurred 0.99 mm before
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(a) The resulting induced voltage zero crossing distribution over the goal
plane, for the setup shown in Figure 6.5b

(b) The simulated setup.
The (x,y)-grid consists
of 3431 points, the
z-sweep starts from
−0.01 m to 0.01m for
each (x,y) point

Figure 6.5.: Goal detection using 1 sensor with σnoise = 10−6 V

the object has passed the goal line.
For the next simulation, three identical magnetic field sensors will be used. Each with a
50 × 4 cm2 rectangular loop. This means that the calculations in (6.1) will be performed
three times, one time for each sensor. Figure 6.6b shows how the sensors are distributed
around the goal plane. WGN of µ = 0 V and σ = 10−6 V is considered. The sum of the
three sensors voltages is used to calculate the resulting zero crossings positions which are
shown in Figure 6.6a. The resulting zero crossing distribution due to the use of three sensors

(a) The resulting induced voltage zero crossing distribution over the goal
plane, for the setup shown in Figure 6.6b

(b) The simulated setup.
The (x,y)-grid consists
of 3431 points, the
z-sweep starts from
−0.01 m to 0.01m for
each (x,y) point

Figure 6.6.: Goal detection using 3 sensors with σnoise = 10−6 V

has a maximum error value of −0.99 mm, which is the same as the case of using only one
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magnetic field sensor.
As a conclusion, the (x,y)-points in the middle of the goal are heavily affected by the added
noise. That resulted in an early zero crossing because the induced voltage values were com-
parable to the noise level of 10−6 V. And increasing the number of magnetic sensors did not
reduce the maximum resulting error value for a fixed noise level. But it increased the areas
which have a lower error values near the sensors positions.

6.2.2. Sensor Position

In this section, I am investigating the influence of the position of the exciter wire on the
goal detection accuracy. The exciter wire will not pass exactly through the middle of the
magnetic sensor. The simulation tool will be used to create a ball object with three orthogonal
embedded coils. One magnetic sensor will be positioned at the middle bottom of the goal
plane and shifted with 2 cm towards the positive z-direction.
Figure 6.7 shows the simulated setup with the same (x,y)-grid as in Section 6.2.1 and a sweep
of the ball’s z-positions starting from −0.05 m to 0.05m for each (x,y) point.

Figure 6.7.: The simulated setup for a 2 cm shifted magnetic sensor

I have used Algorithm 1 to extract the zero crossings for the induced voltages of two different
cases. The first case is without considering the noise effect. The resulting zero crossing
distribution is shown in Figure 6.8a. In the second case WGN samples of µ = 0 V and
σ = 10−6 V were added to the induced voltage values and the corresponding zero crossing
is shown in Figure 6.8b.

By comparing both figures, the maximum error value has reached 39 mm in Figure 6.8b in-
stead of 33 mm in Figure 6.8a. But the presence of the noise has resulted in less error values
for the middle and the upper (x,y)-points. The added noise caused several (x,y)-points to
have an early voltage zero crossings.
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(a) The resulting induced voltage zero crossing distri-
bution over the goal plane, for the setup shown in
Figure 6.7 without considering any noise effect

(b) The resulting induced voltage zero crossing distri-
bution over the goal plane, for the setup shown in
Figure 6.7 with WGN of µ = 0 V and σ = 10−6 V

Figure 6.8.: Goal detection using 1 sensor shifted by 2 cm from the exciter wire

The error’s average for both cases has been calculated by summing all the error values to-
gether then dividing the sum by the number of (x,y)-points. 26.4 mm is the error’s average
without considering the noise effect. While 20.5 mm was the error’s average with consider-
ing the noise effect.
It can be concluded that, although the maximum error value due to the presence of noise was
higher, the error’s average was lower than the case without noise. The presence of the noise
has compensated for the shift in the magnetic sensor’s position.
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6.2.3. Orientation of Sensor

During this section, the influence of the magnetic sensors’ orientation on the goal detection
accuracy will be investigated. I will use the simulation tool to configure three identical and
tilted magnetic sensors and a ball object with three orthogonal coils. Figure 6.9 illustrates
how the sensors are being tilted. The tilting is done by an angle θ around the −x-axis in the
anti-clock wise direction.

Figure 6.9.: Tilting of the magnetic sensors with an angle θ around the x-axis

I will use θ = 1◦ and θ = 3◦ during this investigation. I have chosen small θ values because
it is hard to notice such small titling angles during a real life situation. The simulation tool
will be configured two times, one time for each θ value.
The induced voltage values per each sensor will be simulated. Then Algorithm 1 will be used
two times to extract the voltage zero crossing for each simulated (x,y,z)-position. Figure 6.10
shows the simulated setup. The simulated (x,y)-grid and the z-sweep are defined in Table

Figure 6.10.: The simulated setup for 3 tilted sensors.

6.1 for both θ values. I am running this investigation one time without considering any noise
effect. Then another time with considering a WGN of µ = 0 V and σ = 10−6 V.
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θ◦ x (m) y (m) z (m)

1
3

[0.05, 1.85], step ≈ 0.03 [0.16, 1.22], step ≈ 0.02
[−0.01, 0.01], step = 0.001
[−0.03, 0.03], step = 0.001

Table 6.1.: The simulated (x,y)-grid and the z-sweep for different θ◦ values

Tilting by θ = 1◦ without noise

The resulting error distribution over the goal plane using 1◦ tilted sensors is shown in Figure
6.11.
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Figure 6.11.: Error distribution over the goal plane for 1◦ tilted sensors without noise

For sensor 1 and sensor 3, the error ranges from 1 to 8 mm. This means the goal decision
was made 1 to 8 mm after the object’s has passed the z = 0 m theoretical goal line. By
comparing the sensors’ heat maps, sensor number 2 has the lowest error value of 6 mm.
To generate the sum of the 3 sensors heat map, the induced voltage values for the three
sensors were added together. Then Algorithm 1 was used to extract the zero crossings of the
sum. The maximum error value for the sum is indicated by the red area in the middle of the
goal plane with 7 mm.

Tilting by θ = 3◦ without noise

The resulting error distribution over the goal plane for 3◦ tilted sensors is shown in Figure
6.12. The error range has increased in comparison with the 1◦ tilting. For sensor 1 and 3,
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Figure 6.12.: Error distribution over the goal plane for 3◦ tilted sensors without noise

the error ranges from 3 to 25 mm. Among the three sensors, sensor number 2 has the lowest
error value of 15 mm. And the maximum error value for the sum of the three sensors has
reached 17 mm.
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Tilting by θ = 1◦ with noise

Figure 6.13 illustrates the effect of the WGN of µ = 0 V and σ = 10−6 V on the simulated
induced voltages. Early voltage zero crossings occurred because the noise level was compa-
rable with the voltage level of some (x,y)-points. For that, a threshold voltage value must
be set in order to differentiate between the correct zero crossings and the false ones. I have
chosen a threshold value of 10× σnoise V.
A voltage zero crossing will be considered as a goal event indicator only if the peak of its
corresponding voltage curve is 10 times higher than the noise level. The simulation tool

Figure 6.13.: Noise effect on the simulated induced voltages for different (x,y)-points

was used to get the induced voltage curves. Then noise elements were added to each curve.
Algorithm 1 was used to extract the zero crossings while considering the threshold value.
Figure 6.14 shows the resulting error distribution over the goal plane using 1◦ tilted sensors
and considering the noise effect. The dashed areas in these heat maps represent the ignored
(x,y)-points. Such points can not be considered as goal event indicators due to their relatively
low induced voltage levels as compared to the noise level.

Tilting by θ = 3◦ with noise

Figure 6.15 shows the resulting error distribution over the goal plane using 3◦ tilted sensors
and considering the noise effect. The error range has increased in comparison with the 1◦

tilting. The heat map of the sum of the three sensors includes some points that reached −14
mm error value. This happened because the sum includes the three sensors’ noise elements
together.
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Figure 6.14.: Error distribution over the goal plane for 1◦ tilted sensors with WGN of µ = 0
V and σ = 10−6 V noise
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Figure 6.15.: Error distribution over the goal plane for 3◦ tilted sensors with WGN of µ = 0
V and σ = 10−6 V noise
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From the outcomes of this investigation, it can be concluded that tilting of the magnetic
sensors has resulted in an error distribution for detecting goal events. The error values depend
on the tilting angle θ and the noise level. To wrap up, Table 6.2 includes a summary of all
the error ranges for different setups.

Err. range in (mm), without noise Err. range in (mm) , with WGN of (µ = 0 , σ = 10−6)V
Sen. 1 Sen. 2 Sen. 3 Sum of 3 sen. Sen. 1 Sen. 2 Sen. 3 Sum of 3 sens.

1◦ [1, 8] [1, 6] [1, 8] [1, 7] [1, 6] [−3, 7]
3◦ [3, 25] [3, 15] [3, 25] [3, 17] [−4, 16] [−14, 16]

Table 6.2.: Summary of the observed error range for θ = 1◦, 3◦ tilted sensors
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6.3. CRLB on Goal Accuracy

In this section, I will perform Cramer Rao Lower Bound calculations to get the theoretical
accuracy limit that can be achieved using localization system under investigation. To do that,
I will start with simplifying the induced non-linear voltage curves into linear ones under
some specific conditions. Afterwards, it will be much easier to deal with linear equations to
investigate the different factors that affect the accuracy limit.

6.3.1. Linear Approximation for the Induced Voltage Curves

Figure 6.16 shows the induced voltage curves for different (x,y)-points. The curves are non
linear but the parts inside the zoomed-in circle have a linear behavior. In this chapter I will
exploit this feature and perform linear approximations for the induced voltage curves. The
results of these approximations will be used during the next chapter.

Figure 6.16.: Linear behavior illustration

The goal of this chapter is to find a function

Uapprox(z)

∣∣∣∣
x,y,n

= sx,y,nz (6.4)

where Uapprox(z) is the approximated induced voltage in sensor number n for an object
placed at a certain (x,y)-point, sx,y,n is the slope of the linearly approximated induced voltage
in sensor number n for an object placed at a certain (x,y)-point, and z is the object’s position
along the z-axis.
The following factors affect the accuracy of a linear approximation

• int: the interval where the linear approximation is being carried out.
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• ∆z: the horizontal difference between two points that is used to calculate the slope.

Figure 6.17 illustrates both factors using different int and ∆z values. The blue solid curve
is the induced voltage to be approximated. Linear approx. 1 was created using point P0 and
P1. This approximation matches the solid curve during a ∆z1 period then it start deviating
from it. This deviation represents an error value.

Figure 6.17.: Illustration of the restricting factors for linear approximation

For example, for an object positioned at z = z0 m, the error can be expressed as

error(z0)

∣∣∣∣
x,y,n

= Uind(z0)

∣∣∣∣
x,y,n

− Uapprox(z0)
∣∣∣∣
x,y,n

(6.5)

where error is measured in Volts. Then the total error can be calculated as

errortot

∣∣∣∣
x,y,n

=

z=int/2∑
z=−int/2

√
(Uind(z)− Uind(z))2 (6.6)

where errortot is the total accumulated error value along the int between the induced voltage
curve and the linearly approximated.
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In Figure 6.17, for a fixed int1 value, Linear approx. 2 accumulates more error than Linear
approx. 1. Because ∆z2 is bigger than ∆z1 which allowed for more deviation from the
induced voltage solid curve. This resulted in a smaller slope value for linear approx. 2 than
linear approx. 1. The smaller the ∆z the higher the slope and vice versa.

Increasing the interval to int2 results in more accumulated error for both, linear approx. 1
and linear approx. 2.

I have used the simulation tool to configure the setup shown in Figure 6.18. This setup
consists of four magnetic sensors and a ball object with three orthogonal coils. The simulated
(x,y)-grid is shown in Figure 6.19 where the red points are the nearest to each sensor. And
the object will be moved along the z-axis for each (x,y)-point and the induced voltage for
each magnetic sensor will be simulated.

Figure 6.18.: The configured setup using four magnetic sensors

The simulated z-sweep is included in Table 6.3.

z-sweep (m)
[−0.05, 0.05], ∆z = 0.001

Table 6.3.: The simulated z-sweep

For the sensor 1 and (x,y)-point number 2 in Figure 6.19, the error(∆z) (calculated using
(6.5)) distribution for different int values is shown in Figure 6.20. For small int values, the
error increases slowly with increasing the ∆z. The highest error which is indicated by the
red area at the left upper corner of the heat map was a result of a small ∆z and a high int of
0.05 m.
Figure 6.21 shows the error versus the int value. The highest ∆z value of 0.05 m has
resulted in a maximum error of around 1000 mV at an int of 0.05 m. And the lowest ∆z
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Figure 6.19.: The simulated (x,y)-grid

Figure 6.20.: error distribution for sensor 1 and (x,y)-point number 2

value of 0.001 m has resulted in a maximum error of around 3000 mV at an int of 0.05 m.

For the sensor 2 and (x,y)-point number 27 in Figure 6.19, the error(∆z) (calculated using
(6.5)) distribution for different int values is shown in Figure 6.22. The highest error which
is indicated by the red area at the right upper corner of the heat map was a result of a ∆z of
0.05 m and a high int of 0.05 m. The error range is much smaller than the results in Figure
6.20 because the (x,y)-point number 27 is not near the magnetic sensor.
Figure 6.23 shows the error versus the int value. The highest ∆z value of 0.05 m has
resulted in a maximum error of around 0.2 µV at an int of 0.05 m. And the lowest ∆z value
of 0.001 m has resulted in a maximum error of around 0.1 µV at an int of 0.05 m.
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Figure 6.21.: error versus int for sensor 1 and (x,y)-point number 2

Figure 6.22.: error distribution for sensor 2 and (x,y)-point number 27

Figure 6.23.: error versus int for sensor 2 and (x,y)-point number 27
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For goal detection, the theoretical goal line is fixed at z = 0 m. Therefore I have chosen an
int = 0.02 m and ∆z = 0.001 m for performing the linear approximations.
I have written a Python code to calculate the sx,y,n value for each linearly approximated
induced voltage curve. Table 6.4 includes the calculated slopes for each of the 35 (x,y)-
points in Figure 6.19.

(x,y)-point Sensor 1 Sensor 2 Sensor 3 Sensor 4
1 − 0.35 −2.97e−05 −0.35 −2.97e−05
2 −3.89 −2.32e−4 −3.49e−3 −8.16e−05
3 −0.21 −0.21 −5.05e−4 −6.46e−05
4 −2.29e−4 −3.85 −1.38e−4 −3.86e−05
5 −2.04e−05 −0.24 −5.74e−05 −2.44e−05
6 −3.48e−3 −8.15e−05 −3.89 −2.31e−4
7 −1.52e−3 −1.05e−4 −1.52e−3 −1.05e−4
8 −6.36e−4 −6.36e−4 −1.34e−4 −3.69e−05
9 −9.78e−05 −1.41e−3 −3.37e−05 −1.60e−05

10 −3.13e−05 −1.34e−3 −2.24e−05 −1.39e−05
11 −5.02e−4 −6.41e−05 −0.21 −0.21
12 −1.30e−4 −3.57e−05 −6.16e−4 −6.16e−4
13 −7.39e−05 −7.39e−05 −7.39e−05 −7.39e−05
14 −3.24e−05 −1.18e−4 −2.23e−05 −2.23e−05
15 −2.34e−05 −1.83e−4 −1.83e−05 −1.83e−05
16 −1.35e−4 −3.78e−05 −2.25e−4 −3.77
17 −2.91e−05 −1.38e−05 −8.43e−05 −1.21e−3
18 −1.90e−05 −1.90e−05 −2.76e−05 −1.00e−4
19 −1.24e−05 −2.62e−05 −1.24e−05 −2.62e−05
20 −1.37e−05 −4.90e−05 −1.27e−05 −2.05e−05
21 −5.01e−05 −2.13e−05 −1.78e−05 −0.21
22 −1.03e−05 −6.38e−06 −1.44e−05 −6.16e−4
23 −7.37e−06 −7.37e−06 −9.44e−06 −7.39e−05
24 −5.79e−06 −9.35e−06 −6.24e−06 −2.23e−05
25 −7.78e−06 −1.83e−05 −7.78e−06 −1.83e−05
26 −2.28e−05 −1.24e−05 −3.66e−06 −2.31e−4
27 −5.29e−06 −3.80e−06 −4.30e−06 −1.05e−4
28 −4.17e−06 −4.17e−06 −4.16e−06 −3.69e−05
29 −3.54e−06 −4.92e−06 −3.53e−06 −1.60e−05
30 −4.80e−06 −8.80e−06 −4.71e−06 −1.39e−05
31 −1.88e−05 −1.20e−05 −1.80e−06 −2.97e−05
32 −1.23e−05 −9.74e−06 −6.73e−06 −8.16e−05
33 −1.14e−05 −1.14e−05 −8.84e−06 −6.46e−05
34 −9.64e−06 −1.22e−05 −8.38e−06 −3.86e−05
35 −8.28e−06 −1.29e−05 −7.55e−06 −2.44e−05

Table 6.4.: Extracted measured slopes for ∆z = 0.001 m and int = 0.02 m

The slopes in green boxes represent the highest slopes in magnitude and they were a result of
the nearest (x,y)-point to each sensor. The ones in the red boxes represent the lowest slopes
in magnitude and they were a result of the farthest (x,y)-point to each sensor.
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6.3.2. CRLB Calculations

In this section, I will use the linearly approximated voltages to perform CRLB (Cramer Rao
Lower Bound) calculations. CRLB is a minimum bound on the variance of the estimated z-
position of the ball object and hence the of the goal detection accuracy. This bound depends
only on the behavior of the noise and independent of any localization algorithm.
The following calculations are only valid for an int of 0.02 m which was used during Section
6.3.1 to linearly approximate the induced voltage curves.
Recall (6.4)

Uapprox(z)

∣∣∣∣
x,y

= sx,y,nz

where z takes any value from −0.01 to 0.01 m. Then, the measured voltage value by sensor
number n can be calculated as following

Mn

∣∣∣∣
x,y

= Un(z)

∣∣∣∣
x,y

+ wn (6.7)

where wn is a random and independent WGN of µ = 0 V and a standard deviation σ V
observed by sensor number n. I have considered N number of observing sensors, where
n = 1, 2...N . Figure 6.24 shows the distribution of N = 10 sensors around the localization
area.

Figure 6.24.: Magnetic sensors distribution and the chosen (x,y)-points
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According to [9], the probability density function is expressed as

f(M ; z) =
N∏
n=1

1√
2πσ2

exp

[
−(Mn(z)− Un(z))2

2σ2

]
(6.8)

which tells us how probable it is to measure a certain M voltage value provided that the ball
object is located at a certain location z.
Please note that for simplicity reasons the terms M and U(z) mean the measured and the
approximated voltages respectively as a function of z for an object located at a certain (x,y)-
point, and the term sn means the approximated voltage’s slope observed by sensor n for a
ball objected located at a certain (x,y)-point.
The next step is to take the ln of (6.8) which will become

lnf(M ; z) = ln

(
1√

2πσ2

)N
− 1

2σ2

N∑
n=1

(Mn(z)− Un(z))2 (6.9)

Now, I will fix M and take the first partial w.r.t z

∂

∂z
lnf(M ; z) =

1

σ2

N∑
n=1

sn(Mn(z)− Un(z)) (6.10)

then I take the partial derivative one more time

∂2

∂z2
lnf(M ; z) = − 1

σ2

N∑
n=1

s2n (6.11)

and since equation 6.11 does not depend on M , the CRLB on the variance of estimating z in
the int of 0.02 m can be calculated as following

CRLB =
1

− ∂2

∂z2
lnf(M ; z)

=
σ2∑N
n=1 s

2
n

(6.12)

As can be seen from equation 6.12, the CRLB depends on the noise’s standard deviation and
the sum of the squared slopes of the observing sensors.
For a fixed noise level, the bound on the variance of the object’s z-position declines with
increasing the number of observing magnetic sensors. For a fixed number of sensors, it
increases with increasing the noise level.
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6.3.3. Noise Level Effect

For investigating the noise-level’s effect on the resulting CRLB, I will fix the number of
sensors to N = 10 and calculate the corresponding CRLB of (6.12). This will be done for
the five red (x,y)-points in Figure 6.24 and defined in Table6.5.

Point number (x,y) (m)
1 (0.05,0.05)
2 (0.05,0.6)
3 (0.05,1.2)
4 (0.3,0.5)
5 (0.93,0.6)

Table 6.5.: The investigated (x,y)-points

The slope values sx,y,n were calculated for the aforementioned five points and ten sensors in
an int of 0.02 m.

Figure 6.25 illustrates the calculated CRLB for the chosen (x,y)-points. Point 5 has the
highest bound on estimating the z-position of the object due to the fact that its the farthest
point to all of the sensors. And consequently the induced voltages in the sensors have the
lowest slope values.
Point 1 has the lowest bound because it is positioned near to sensor number 1 and 10. This
resulted in a high slope value which lowered the CRLB according to equation 6.12.
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Figure 6.25.: Noise-level’s effect on the CRLB
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6.3.4. Sensors Constellation Effect

In this section, I will fix the noise level and investigate the CRLB for different sensors’
constellations. Table 6.6 includes the investigated (x,y)-grid.

x-sweep (m) y-sweep (m)
[0.05, 1.85], step= 0.01 [0.05, 1.22], step= 0.01

Table 6.6.: The investigated (x,y)-grid

By inspecting Figure 6.25, noise levels which are higher than 10−8V have resulted in a√
CRLB in the meter and kilometer range for points 2,3,4 and 5. Which seems to be a high

uncertainty range for a real system. On the contrary, noise levels which are less than 10−8V
have resulted in a

√
CRLB in the millimeter and micrometer range for the same points. And

that seems a bit ideal.
So, I have chosen σ = 10−8V to be the fixed noise level during this investigation. Because
it has resulted in a

√
CRLB in the centimeter and millimeter range. Which could be a

reasonable uncertainty range for a real goal detection system.

Using only sensor number 9 (in Figure 6.26b), Figure 6.26a shows the corresponding bound
distribution over the localization plane with a maximum Cramer bound in the range of 240
mm indicated by the red areas.

(a)
√
CRLB distribution over the localization plane observed by sen-

sor number 9

(b) The investigated setup.

Figure 6.26.: CRLB distribution using only 1 sensor

Now, I will increase the number of observing sensors to three sensors as illustrated in Figure
6.27b which results in a

√
CRLB distribution as shown in Figure 6.27a. And as a result, the√

CRLB dropped to a maximum of 140 mm which is consistent with what was expected
following (6.12).
For the next constellation, I will use sensors number 4 and 9 as shown in Figure 6.28b. This
constellation resulted in a

√
CRLB distribution with a maximum value of around 100 mm

as shown in Figure 6.28a.
This maximum value is lower than the maximum bound value when three sensors were used
in Figure 6.27a.
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(a)
√
CRLB distribution over the localization plane observed by sen-

sors number 8, 9, 10

(b) The investigated setup.

Figure 6.27.: CRLB distribution using 3 sensors

(a)
√
CRLB distribution over the localization plane observed by sen-

sors number 4, 9

(b) The investigated setup.

Figure 6.28.: CRLB distribution using 2 sensors

Using sensors number 1, 4, 6 and 9 has resulted in the distribution shown in Figure 6.29a
with a maximum Cramer bound of around 80 mm.

Finally, all the ten sensors in Figure 6.30b have been used and the resulting distribution is
represented by the heat-map of Figure 6.30a with a maximum bound of 60 mm.
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(a)
√
CRLB distribution over the localization plane observed by sen-

sors number 1, 4, 6, 9

(b) The investigated setup.

Figure 6.29.: CRLB distribution using 4 sensors

(a)
√
CRLB distribution over the localization plane observed by the

ten sensors in Figure 6.30b

(b) The investigated setup.

Figure 6.30.: CRLB distribution using 10 sensors

The aforementioned figures illustrate that increasing the number of the observing sensors
lowers the CRLB. The bound is also affected by how the sensors are being distributed.
For example, using N = 4 sensors (shown in Figure 6.29b) has resulted in a maximum√
CRLB of 80 mm while using N = 10 sensors (shown in Figure 6.30b) has a maximum

bound of 60 mm which means only a 25% improvement.
The results of such an investigation can help in:

• Defining the accuracy limit of the system using a certain sensors’ constellation

• Optimizing the number of the required sensors to achieve a specific accuracy limit
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7. 2-D Localization

Magnetic field localization can be used to estimate a 2-D position of an object equipped with
one or more coils. In this chapter, an overview about the 2-D localization process will be
given and some disturbing influences of chapter 5 will be investigated.

7.1. 2-D Localization Method

2-D localization can be achieved by performing a comparison algorithm between the mea-
sured voltage value by sensor number n and a simulated induced voltage values for the same
sensor. And depending on the minimum output from the algorithm, a 2-D position will be
estimated.
For 2-D localization in the xy-plane, a reference table with all the corresponding voltage
values including different (x,y)-positions must be created. I have used the simulation tool to
configure the setup shown in Figure 7.1.

Figure 7.1.: 2-D localization setup

This setup consists of the following

• Ten magnetic sensors positioned in the xy-plane, 0.5×0.02 m each

• Exciter wire that passes exactly through the middle of each sensor and carries an AC
current of 1 A
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• An object with three orthogonal circular coils oriented in the x, y, z directions as
illustrated in Figure 3.2. Each one has a radius of 3.81 cm

The object was moved along the (x,y)-grid and the induced voltage in each sensor was cal-
culated. A grid of 1 cm has been selected. Hence the maximum achievable localization
accuracy is 1 cm. Figure 7.2 shows a heat map of the sum of the induced voltage distribution
over the localization plane.

Figure 7.2.: The simualted induced voltage distribution for the setup in Figure 7.1

The simulated table has the form of Table 7.1 with ml rows and N + 2 columns. Where

Grid Un
x-Pos. (m) y-Pos. (m) Sen. 1 (V) Sen. 2 (V) ... Sen. N (V)

x1 y1 U1,x1y1 U2,x1y1 ... UN,x1y1
x1 y2 U1,x1y2 U2,x1y2 ... UN,x1y2
x1 y3 U1,x1y3 U2,x1y3 ... UN,x1y3
. . . . . .
. . . . . .
. . . . . .
xm yl U1,xmyl U2,xmyl ... UN,xmyl

Table 7.1.: The simulated 2-D Localization reference table form

m and l are the simulated x and y points respectively. N is the total number of the used
magnetic sensors. Un is the simulated induced voltage in a sensor n for an object positioned
at a specific (x,y)-position.
For example, I have considered the localization setup in Figure 7.3b with an object placed
exactly in the middle of the localization xy-plane at (0.93,0.6)m. One magnetic sensor will
be used for the localization.
Algorithm 2 will be used to determine the object’s position. The input to the algorithm is
the xy-grid and the simulated voltage U9 for (0.93,0.6)m from Table 7.1. Additionally, I
have chosen the threshold value Ethr to be 10µV. Ethr represents the selection criteria for
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(x,y)-point to be considered as a possible object’s position.
Figure 7.3a illustrates the output from Algorithm 2. The blue colored points represent the
possible object’s positions. Several (x,y)-positions have produced an Euclidean distances
less than Ethr. Which means that the current position of the object does not result in a
unique Euclidean distance.

Algorithm 2 2-D localization based on a threshold Euclidean distance
1: Input: Grid(ml × 2), U9(ml × N ), U9, Ethr
2: Output: possiblePositions
3: EuclideanDistances = [ ]
4: for p in range (0,ml) do

5: EuclideanDistances.append

(√(
Un − Un[p]

)2)
6: possiblePositions = [ ]
7: for i in range (0,len(EuclideanDistances)) do
8: if EuclideanDistances[i] < Ethr then
9: possiblePositions.append([Grid[i][0], Grid[i][1] ])

10: return possiblePositions

(a) Algorithm 2 output presenting the possible (x,y)-positions of
the object for a certain induced voltage

(b) Localization setup with an ob-
ject positioned in the middle of
the xy-plane and one magnetic
sensor

Figure 7.3.: Uncertainty in 2-D localizing of an object

For 2-D localization, N > 1 sensors should be used to decrease the uncertainty in determin-
ing the object’s position. During the following sections, the effect of increasing the number
of sensors on the localization accuracy will be investigated.
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7.2. Influences on 2-D Localization

During this section, the following influences are investigated:

• Number of the magnetic field sensors.

• Thermal noise effect.

• Orientation of the sensors.

• Orientation of the object coils.

7.2.1. Number of the Used Sensors

In this section, I am investigating how the number of the used sensors affects the 2-D local-
ization accuracy. Additionally, the noise effect will be considered.
In real life, the presence of noise will not allow a 100% accurate localization. Therefore,
the measured voltage M by sensor n for an object positioned at (x,y)-point can be expressed
as

Mn

∣∣∣∣
x,y

= Un

∣∣∣∣
x,y

+ wn (7.1)

where Un is the simulated induced voltage in sensor n for an object positioned at (x,y)-point,
and wn is a random WGN of µ = 0V and a standard deviation σ = 10−6V. I have chosen
σ = 10−6V because measurements were carried out on the real system and the measured
noise level was in the range of [10−8, 10−6]V. Each wn sample is random and independent
for each sensor.
I have implemented Algorithm 3 in Python to determine the object’s position based on the
minimum Euclidean distance between the measured sensors’ voltages and the simulated ones
from the reference table.

Algorithm 3 2-D localization based on the minimum Euclidean distance
1: Input: Grid(ml × 2), Un(ml × N ), Mn(1 × N )
2: Output: x-pos, y-pos
3: EuclideanDistances = [ ]
4: for p in range (0,ml) do

5: EuclideanDistances.append

(√∑N
n=1

(
Mn − Un[p]

)2)
6: minDist = min(EuclideanDistances)
7: xyIndex = EuclideanDistances.index(minDist)
8: x-pos = Grid[xyIndex] [0]
9: y-pos = Grid[xyIndex] [1]

10: return x-pos, y-pos

Algorithm 3 calculates all the Euclidean distances between the measured voltage by sensor
n and all the simulated voltages for each other sensor. Then the sum of these distances, for
each (x,y)-point in the grid, is appended to EuclideanDistances list. Afterwards, the mini-
mum Euclidean distance is calculated. The corresponding index of the minimum distance is
extracted. The x-pos and y-pos which have the same index will be returned.
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N = 2 Sensors

As a start, two sensors are used (sensors 4 and 9 in Figure 7.1) to localize an object positioned
in the middle of the localization plane at (x = 0.93m,y = 0.6m).
Depending on the noise sample wn, Algorithm 3 will produce a different (x,y)-position of
the object. Therefore, Monte Carlo(MC) simulations method is useful in such a case. MC
method simply means running the same simulation many times but each time a randomly
generated noise value will be used. This will produce a statistical distribution for the possible
object’s positions.
Figure 7.4 shows the possible (x,y)-positions for an object positioned at the red reference
point. To generate this distribution, Algorithm 3 was used 1000 times and each time a random
wn value was used. Several (x,y) positions resulted in an induced voltage value which gives
a shorter Euclidean distance than the distance produced by the correct object’s position.

Figure 7.4.: Output of Algorithm 3 using 2 sensors for 1000 MC simulations

N = 4 Sensors

Now, the number of the used sensors is increased to four. Two more sensors will be added to
the previous setup, namely sensor 1, and 7 in Figure 7.1. Again, Algorithm 3 was executed
1000 times and each time a random wn value was used.
Figure 7.5 includes the possible (x,y)-positions for the same object positioned at the red
reference point. But this time the blue points are concentrated near the reference point with
less ambiguity. The uncertainty in determining the object’s position is more confined than
the case of using two sensors.

N = 10 Sensors

All the ten sensors of Figure 7.1 were used during this section. The same 1000 MC sim-
ulations were conducted. Each time a random wn value was used. Figure 7.6 shows the
resulting uncertainty area of the outputs from Algorithm 3.
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Figure 7.5.: Output of Algorithm 3 using 4 sensors for 1000 MC simulations

Figure 7.6.: Output of Algorithm 3 using 10 sensors for 1000 MC simulations

From the outcomes of this investigation, its obvious that the number of the used sensors
affects the accuracy of 2-D localization. The more sensors the more accurate an object can
be localized in 2-D space.

7.2.2. Noise Level Effect on the 2-D Localization Accuracy

In this section, the effect of the noise level on the localization accuracy will be investigated.
All the ten sensors of Figure 7.1 will be used to carry on the localization process. I have
selected ten noise levels in the range [10−10, 10−1]V to be investigated.
Firstly, the object is positioned at (x0 = 0.93m,y0 = 0.6m). For each noise level, Mn in
(7.1) is calculated 1000 times and in each time wn is randomly generated and Algorithm 3
is executed. After each time Algorithm 3 is executed, an error value errorxy is calculated as
following

errorxy =

(√(
x0 − xoutput

)2
+
(
y0 − youtput

)2)
(7.2)
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where it is measured in meters, x0 is the object’s correct x-position, xoutput is the output
x-position from Algorithm 3, y0 is the object’s correct y-position, youtput is the output y-
position from Algorithm 3. Figure 7.7 illustrates what is meant by errorxy. As can be seen,
it is the euclidean distance between the localization algorithm output and the correct object’s
position.

Figure 7.7.: Illustration of errorxy in (7.2)

After 1000 errorxy values were calculated, for each noise level, their average can be ex-
pressed as

avgErrorxy,σnoise
=

∑1000
n=1 errorxy,n

1000
(7.3)

Then their corresponding standard deviation can be calculated as

stdErrorxy,σnoise
=

√√√√ 1

1000

1000∑
n=1

(errorxy,n − avgError)2 (7.4)

Figure 7.8 shows the noise effect on both stdErrorxy and avgErrorxy for an object posi-
tioned exactly in the middle of the localization plane at (0.93m,0.6m).

The same object will be positioned in the left bottom corner of the localization plane at
(x0 = 0.93m,y0 = 0.6m) close to the exciter wire. The previous calculations will be repeated
for the new object’s position. Figure 7.9 shows the resulting noise effect on both stdErrorxy
and avgErrorxy.
From Figure 7.8 and Figure 7.9, it can be concluded that localization of an object placed
near the exciter wire is more robust against noise. This is because the nearer the object to
the exciter wire the more voltage it induces in each sensor. For example, in Figure 7.9 the
error starts to occur at σnoise > 10−3V. Which means that the induced voltages were in the
milli-voltage range. Furthermore, in Figure 7.8 the error starts to occur at σnoise > 10−7V.
Which means that the induced voltages were in the micro-voltage range.
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Figure 7.8.: Noise level effect on the stdErrorxy and avgErrorxy for an object positioned
at (0.93m,0.6m)

Figure 7.9.: Noise level effect on the stdErrorxy and avgErrorxy for an object positioned
at (0.05m,0.05m)
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7.2.3. Orientation of the Used Sensors

Another factor that affects the 2-D localization accuracy is how the measuring sensors are
oriented. In this section I am investigating how tilting of the 10 sensors affects the localiza-
tion accuracy. I have used the simulation tool to configure the same setup in Figure 7.1 but
every sensor will be tilted anti-clockwise around the −x-axis with an angle θ.

Figure 7.10.: Tilting of sensors anti-clockwise around the x-axis with an angle θ

Firstly, the object is placed at (x0 = 0.05m,y0 = 0.05m) as shown in Figure 7.11b. Then
the errorxy from (7.2) was calculated for each tilting angle θ. In this case, xoutput and youtput
in (7.2) are the output (x,y)-position from Algorithm 3. Additionally, Mn in Algorithm 3 is
the measured voltage value in sensor n due to a titling angle θ without considering the noise
effect. Figure 7.11a shows the resulting errorxy due to tilting of the sensors. The maximum
error level has reached 160 cm with a tilting angle θ = 180◦

(a) The resutling errorxy due to tilting of the sensors with
angle θ

(b) The localization setup with an ob-
ject positioned at (x0 = 0.05m,y0 =
0.05m)

Figure 7.11.: The resulting errorxy for an object positioned at (x0 = 0.05m,y0 = 0.05m)

Secondly, the object is placed at (x0 = 0.93m,y0 = 0.6m) as shown in Figure 7.12b. Then
the errorxy from (7.2) was calculated for each tilting angle θ. Figure 7.12a shows the result-
ing errorxy due to tilting of the sensors.The maximum error level has reached 9 cm with a
tilting angle θ = 180◦

Finally, the object is placed at (x0 = 1.85m,y0 = 0.6m) as shown in Figure 7.13b. Then the
errorxy from (7.2) was calculated for each tilting angle θ. Figure 7.13a shows the resulting
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(a) The resutling errorxy due to tilting of the sensors with
angle θ

(b) The localization setup with an ob-
ject positioned at (x0 = 0.93m,y0 =
0.6m)

Figure 7.12.: The resulting errorxy for an object positioned at (x0 = 0.93m,y0 = 0.6m)

errorxy due to tilting of the sensors. The maximum error level has reached 150 cm with a
tilting angle θ = 180◦

(a) The resulting errorxy due to tilting of the sensors with
angle θ

(b) The localization setup with an ob-
ject positioned at (x0 = 1.85m,y0 =
0.6m)

Figure 7.13.: The resulting errorxy for an object positioned at (x0 = 1.85m,y0 = 0.6m)

From the results of this investigation, the position in the middle of the localization plane has
produced less error than those near to the exciter wire. The reason is the same as mentioned
before which relates to the amount of induced voltages in the sensors due to the object’s
magnetic field. The further the object from the exciter wire the lower the induced voltage
in each sensor and the lower the output values from Algorithm 3. Then the terms of (7.2)
results in less errorxy value.
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7.2.4. Rotation of Object Coils

The object’s coils are the main source of the secondary magnetic field which is necessary
for localization. Each coil produces a certain amount of magnetic flux depending on the
amount of the primary magnetic flux which passed through it’s area. Although the coil’s
area is constant, the effective coil’s area which encloses primary magnetic flux changes with
the coil orientation.
Therefore, in this section I am investigating how the orientation of the object’s coils affects
the induced voltages in the sensors and hence the localization accuracy. Noise effect will not
be considered.
The simulation tool was used to configure the setup shown in Figure 7.14. Including ten
sensors and an object with three orthogonal coils. Each coil is oriented in the x, y or z
direction. The object is positioned at each of the three red points in Figure 7.14. At each
point, the object is rotated around each of the (x,y,z)-axes with an angle φ. I am investigating
two rotation angles, namely φ = 45◦ and φ = 90◦.
Figure 7.15 illustrates how the rotation around each axis is done. The rotation angle φ is
increasing in the anti-clockwise direction when looking towards the positive direction of the
rotation axis.

Figure 7.14.: The configured setup and the investigated (x,y)-points

For each investigated point, the errorxy from (7.2) was calculated for each rotation angle
φ for each axis. In this case, xoutput and youtput in (7.2) are the output (x,y)-position from
Algorithm 3. Additionally, Mn in Algorithm 3 is the measured voltage value in sensor n due
to a rotation angle φ without considering the noise effect.
Table 7.2 includes the resulting errorxy for each investigated point. The check marks repre-
sent a correct 2-D localization with no errors.
For point 1 which is located near to the exciter wire, an error value of 0.042m occurred when
the object was rotated around x or y-axis with φ = 45◦.
No errors have occurred when the object was positioned at point 2 for any rotation angle
around any axis.
Point 3 suffered also from errors because of the fact that its located near the exciter wire.
From Table 7.2, it can be seen that rotating the object around the z-axis with any φ angle
did not result in any errors. Because this rotation only affects the orientation of both x,
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and y coils which are the less contributors to the overall secondary magnetic flux. In the
meanwhile, the orientation of the z-coil remains intact in the xy-plane which produces the
majority of the magnetic flux that passes through the sensors’ areas.

Figure 7.15.: Object coils rotation illustration
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rotation axis φ
Point 1 (m)

(x = 0.05, y = 0.05)
Bottom left corner

Point 2 (m)
(x = 0.93, y = 0.6)

Middle

Point 3 (m)
(x = 1.85, y = 0.6)
Middle right-side

x 45◦ errxy = 0.042m errxy = 0.022m
x 90◦

y 45◦ errxy = 0.042m errxy = 0.028m
y 90◦

z 45◦

z 90◦

Table 7.2.: Error due to the rotation of the object with angle φ

From the results of this investigation, its noticeable that the localization accuracy is more
vulnerable to errors near the the exciter wire due to the rotation of the object’s coils.
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8. Summary

Systems that use a magnetic field for localizing objects do suffer from various disturbing
influences. These influences can come from the system’s imperfections or from the sur-
rounding environment. In this thesis, a selected group of these influences was investigated
for different localization applications.
For 1-D localization, I have explained the principle of the GoalRef system which indicates
whether a ball has crossed the goal line. The number of sensors influence on the goal detec-
tion accuracy was investigated while considering WGN effect. Additionally, the orientation
of the sensors was examined by simulating sensors with tilting angles of θ = 1◦ and 3◦.
Without considering the noise effect, maximum error values of 8 mm and 25 mm have oc-
curred at θ = 1◦ and 3◦ sensors tilt respectively. The resulting error distribution over the goal
plane was consistent with what already has been observed by the GoalRef team at Fraunhofer
IIS previously. The presence of noise has affected heavily the 1-D position estimation in the
middle of the goal plane. This resulted in an early voltage zero crossings which can not be
considered for a correct goal detection. To facilitate the CRLB derivation, the object was
positioned at different (x,y)-points and moved along the z-axis. Additionally, The resulted
non linear induced voltage curves were linearly approximated. I have fixed the number of
sensors to be N = 10 and the corresponding CRLB was calculated for different noise levels.
Five (x,y)-positions were selected and the resulting CRLB was in millimeter and centimeter
range. Then, I have fixed the noise level to be 10−8V and different sensor constellations
were investigated. This has shown that not only increasing the number of sensors lowers the
bound but also how they are distributed around the goal plane.
For 2-D localization, the method of estimating the (x,y)-position of an object was provided.
The simulation tool was used to configure the 2-D localization setup. Unlike the 1-D local-
ization, N > 1 sensors should be used to decrease the uncertainty and to estimate a useful
2-D position of the object. The number of the used sensors was investigated while consid-
ering noise. Increasing the sensors has reduced the ambiguity in estimating the object’s 2-D
position. Furthermore, the sensors were tilted by an angle θ between 10◦ and 180◦ and the er-
ror in estimating the object’s 2-D position was calculated for each angle. The positions in the
middle of the localization plane have produced less error than those near to the exciter wire.
WGN noise effects on the localization accuracy were investigated. The number of sensors
was fixed to N = 10 and I have investigated the effects of the noise with standard deviation
of σnoise = [10−10, 10−1]V on the localization accuracy. The (x,y)-positions near the exciter
wire were more robust against noise than those in the middle of the goal plane. Finally, the
object coils were rotated around each of the (x,y,z)-axes with φ = 45◦ and φ = 90◦. As a
result, the localization accuracy was more vulnerable to errors for the (x,y)-positions near
the the exciter wire.

The methods and the results of this work can be used by the engineers during the design pro-
cess of the systems. For example, the outcomes of the CRLB investigations can be helpful
in choosing the sensors constellation for a specific localization accuracy limit.
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Appendices
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A. Magnetic Sensors Types

"Magnetic sensors can be classified according to whether they measure the total magnetic
field or the vector components of the magnetic field."([7], p. 631) In our investigations we
will be using stationary vector magnetometers.
The principle behind this type of magnetometer is Faraday’s law of induction (Section 2.2 ).
If the magnetic flux through a coiled conductor changes, a voltage proportional to the rate
of change of the flux is generated between its leads. The flux through the coil will change if
the coil is in a magnetic field that varies with time, if the coil is rotated in a uniform field, or
if the coil is moved through a nonuniform field. ([7], p. 632)
Sensors of this type can detect fields as weak as 10−10mT ([8], Table 48.1) and their useful
frequency range is typically from 0.1 Hz to 1 MHz ([8], Table 48.1), which is suitable for
our localization applications.

B. Algorithm 1

i m p o r t numpy as np

d e f g o a l D e t e c t ( U_ind ) :
g o a l E v e n t = 0
f o r i i n r a n g e ( 0 , l e n ( U_ind [ i ] ) −1 ) :

b u f f e r = U_ind [ i ]
i f np . s i g n ( b u f f e r ) != np . s i g n ( U_ind [ i + 1 ] ) :

g o a l E v e n t = 1
b r e a k

r e t u r n g o a l E v e n t
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C. Algorithm 2

i m p o r t numpy as np

d e f loc2D ( g r i d , U_9sim , U_9 , E _ t h r ) :
e u c l i d e a n D i s t a n c e s = [ ]
f o r p i n r a n g e ( 0 , l e n ( g r i d ) :

e u c l i d e a n D i s t a n c e s . append ( np . s q r t
( np . s q u a r e ( U_9−U_9sim [ p ] ) ) )

p o s s i b l e P o s i t i o n s = [ ]
f o r i i n r a n g e ( 0 , l e n ( e u c l i d e a n D i s t a n c e s ) ) :

i f e u c l i d e a n D i s t a n c e s [ i ] < E _ t h r :
p o s s i b l e P o s i t i o n s . append ( [ g r i d [ i ] [ 0 ] ,

g r i d [ i ] [ 1 ] ] )
r e t u r n p o s s i b l e P o s i t i o n s

D. Algorithm 3

i m p o r t numpy as np

d e f loc2D_min ( g r i d , U_n , M_n ) :
e u c l i d e a n D i s t a n c e s = [ ]
f o r p i n r a n g e ( 0 , l e n ( g r i d ) :

sum = 0
f o r n i n r a n g e ( 0 , l e n (M_n ) ) :

sum += np . s q u a r e (M_n[ n ] − U_n [ p ] [ n ] )
e u c l i d e a n D i s t a n c e s . append ( np . s q r t ( sum ) )

minDis t = min ( e u c l i d e a n D i s t a n c e s )
xyInex = e u c l i d e a n D i s t a n c e s . i n d e x ( minDis t )
xPos = g r i d [ xyIndex ] [ 0 ]
yPos = g r i d [ xyIndex ] [ 1 ]
r e t u r n xPos , yPos
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E. Plotting Figure 6.6a

i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t m a t p l o t l i b . c o l o r s a s c o l o r s

# P l o t t i n g a heatmap f o r t h e v o l t a g e
# z e r o c r o s s i n g s o f t h r e e s e n s o r s

p l t . r c ( ’ f o n t ’ )
p l t . r c ( ’ x t i c k ’ , l a b e l s i z e =20)
p l t . r c ( ’ y t i c k ’ , l a b e l s i z e =20)
f i g , ax = p l t . s u b p l o t s ( )
goa lWid th = 1 . 9 0
g o a l H e i g h t = 1 . 2 5
ypos = np . l i n s p a c e ( 0 . 0 5 , g o a l H e i g h t − 0 . 0 5 , num=47 , e n d p o i n t =True )
xpos = np . l i n s p a c e ( 0 . 0 5 , goa lWid th − 0 . 0 5 , num=73 , e n d p o i n t =True )
y , x = np . meshgr id ( ypos , xpos )
z = [ ]
f o r i i n r a n g e ( 0 , l e n ( s e l f . s u m _ x y z _ l i s t _ t h r e e S e n s o r s ) , l e n ( ypos ) ) :

temp = s e l f . x y z _ l i s t 4 [ i : i + l e n ( ypos ) ]
temp1 = [ ]
f o r e l e m e n t i n temp :

temp1 . append ( e l e m e n t [ 2 ] )
z . append ( temp1 )

z = np . a r r a y ( z )
f o r i i n r a n g e ( 0 , l e n ( z ) ) :

f o r i i i n r a n g e ( 0 , l e n ( z [ i ] ) ) :
z [ i ] [ i i ] = z [ i ] [ i i ] ∗ 1000

t i k s = np . l i n s p a c e ( z . min ( ) , z . max ( ) , 10)
f o r i i n r a n g e ( 0 , l e n ( t i k s ) ) :

t i k s [ i ] = "%.2 f " %t i k s [ i ]
bounds = t i k s
norm = c o l o r s . BoundaryNorm ( b o u n d a r i e s =bounds , n c o l o r s =256)
pcm = ax . pco lo rmesh ( x , y , z , norm=norm , cmap= ’ j e t ’ )
c b a r = f i g . c o l o r b a r ( pcm , ax=ax , o r i e n t a t i o n = ’ v e r t i c a l ’ )
c b a r . s e t _ l a b e l ( ’ e r r o r (mm) ’ , s i z e =22)
ax . s e t _ y l a b e l ( ’Y (m) ’ , f o n t s i z e =26)
ax . s e t _ x l a b e l ( ’ x (m) ’ , f o n t s i z e =26)
p l t . show ( )
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F. Plotting Figure 6.11

i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t m a t p l o t l i b . c o l o r s a s c o l o r s

# P l o t t i n g 4 heatmaps , one f o r each s e n s o r
# wi th t h e e r r o r d i s t r i b u t i o n f o r one d e g r e e
# t i l t e d s e n s o r s
p l t . r c ( ’ f o n t ’ )
p l t . r c ( ’ x t i c k ’ , l a b e l s i z e =16)
p l t . r c ( ’ y t i c k ’ , l a b e l s i z e =16)
f i g , axe s = p l t . s u b p l o t s ( 2 , 2 )

f i g . s u b p l o t s _ a d j u s t ( wspace = 0 . 1 , h s pa ce = 0 . 2 , r i g h t = 0 . 8 )
axes = axes . r a v e l ( )
x1 = [ ] ; y1 = [ ] ; z1 = [ ] ; x2 = [ ] ; y2 = [ ] ;
z2 = [ ] ; x3 = [ ] ; y3 = [ ] ; z3 = [ ] ; x4 = [ ] ; y4 = [ ]
; z4 = [ ] ; z_2D1 = [ ] ; z_2D2 = [ ] ; z_2D3 = [ ] ; z_2D4 = [ ]
f o r i i n r a n g e ( 1 , 5 ) :

x = e v a l ( " x%d " % i )
y= e v a l ( " y%d " % i )
z= e v a l ( " z%d " % i )
x y z _ l i s t = e v a l ( " x y z _ l i s t%d " % i )
# P r e p a r i n g t h e l i s t s f o r p l o t t i n g hea tmaps
f o r e l me n t i n x y z _ l i s t :

x . append ( e lm en t [ 0 ] )
y . append ( e lm en t [ 1 ] )
z . append ( e lm en t [ 2 ] ∗ 1000)

z_2D = e v a l ( " z_2D%d " % i )
f o r i i i n r a n g e ( 0 , l e n ( z ) , l e n ( y V a l u e s _ E x t r a c t e d ) ) :

t e m p L i s t = [ ]
t e m p L i s t = z [ i i : i i + l e n ( y V a l u e s _ E x t r a c t e d ) ]
z_2D . append ( t e m p L i s t )

# Se tup t h e 2D g r i d wi th Numpy
x , y = np . meshgr id ( x V a l u e s _ E x t r a c t e d , y V a l u e s _ E x t r a c t e d )
# Conve r t i n t e n s i t y ( l i s t o f l i s t s )
# t o a numpy a r r a y f o r p l o t t i n g
z = np . a r r a y ( z_2D )
t i k s = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]
bounds = t i k s
norm_mess = m a t p l o t l i b . c o l o r s . BoundaryNorm

( b o u n d a r i e s =bounds , n c o l o r s =256)
ax = axes [ i −1] . pco lo rmesh ( x , y , np . t r a n s p o s e ( z ) ,

norm=norm_mess , cmap= ’ j e t ’ )
axe s [ i −1] . s e t _ y l i m ( bot tom =min ( y V a l u e s _ E x t r a c t e d )

, t o p =max ( y V a l u e s _ E x t r a c t e d ) )
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axes [ i −1] . s e t _ x l i m ( l e f t =min ( x V a l u e s _ E x t r a c t e d )
, r i g h t =max ( x V a l u e s _ E x t r a c t e d ) )

axes [ i −1] . s e t _ y l a b e l ( ’Y (m) ’ , f o n t s i z e =18)
axes [ i −1] . s e t _ x l a b e l ( ’ x (m) ’ , f o n t s i z e =18)
i f i ! = 4 :

axes [ i −1] . s e t _ t i t l e ( ’ Sensor ’+ s t r ( i ) , f o n t s i z e =20)
e l s e :

axes [ i − 1 ] . s e t _ t i t l e ( ’Sum of t h e 3 s e n s o r s ’ , f o n t s i z e =20)
cax = p l t . axes ( [ 0 . 8 5 , 0 . 1 , 0 . 0 1 , 0 . 8 ] )
c b a r = p l t . c o l o r b a r ( ax , cax=cax , t i c k s = t i k s )
c b a r . s e t _ l a b e l ( ’ e r r o r (mm) ’ , s i z e =18)
p l t . t i c k _ p a r a m s ( l a b e l s i z e =18)
p l t . x t i c k s ( f o n t s i z e = 18)
p l t . y t i c k s ( f o n t s i z e =18)
p l t . show ( )

G. Plotting Figure 6.30a

i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t m a t p l o t l i b . c o l o r s a s c o l o r s

# P l o t t i n g one heatmap f o r t h e
# CRLB d i s t r b u t i o n ove r t h e g o a l p l a n e
# u s i n g 10 s e n s o r s and n o i s e l e v e l o f 1e−8V
s l o p e s = [ ]
f o r i i n r a n g e ( 0 , l e n ( main ) , 2 ) :

temp = [ ]
temp . append ( main1 [ i +1]−main1 [ i ] / 0 . 0 0 1 )
temp . append ( main2 [ i + 1 ] − main2 [ i ] / 0 . 0 0 1 )
temp . append ( main3 [ i + 1 ] − main3 [ i ] / 0 . 0 0 1 )
temp . append ( main4 [ i + 1 ] − main4 [ i ] / 0 . 0 0 1 )
temp . append ( main5 [ i + 1 ] − main5 [ i ] / 0 . 0 0 1 )
temp . append ( main6 [ i + 1 ] − main6 [ i ] / 0 . 0 0 1 )
temp . append ( main7 [ i + 1 ] − main7 [ i ] / 0 . 0 0 1 )
temp . append ( main8 [ i + 1 ] − main8 [ i ] / 0 . 0 0 1 )
temp . append ( main9 [ i + 1 ] − main9 [ i ] / 0 . 0 0 1 )
temp . append ( main10 [ i + 1 ] − main10 [ i ] / 0 . 0 0 1 )
s l o p e s . append ( temp )

sigma = 1e−8
CRLB = [ ]
f o r e l me n t i n s l o p e s :

sum = 0
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f o r s l o p e i n e l me n t :
sum = sum + ( s l o p e ∗ s l o p e )

CRLB . append ( np . s q r t
( s igma ∗ s igma / f l o a t ( sum ) )∗1 0 0 0 )

# P r p e a r i n g t h e h e a t map
xpos = np . a r a n g e ( 0 . 0 5 , 1 . 8 6 , 0 . 0 1 )
ypos = np . a r a n g e ( 0 . 0 5 , 1 . 2 1 , 0 . 0 1 )
x= xpos . t o l i s t ( )
y = ypos . t o l i s t ( )
x , y = np . meshgr id ( x , y )
z= [ ]
f o r i i n r a n g e ( 0 , l e n (CRLB) , l e n ( ypos ) ) :

temp = CRLB[ i : i + l e n ( ypos ) ]
z . append ( temp )

# P l o t t i n g t h e HeatMap
p l t . r c ( ’ f o n t ’ )
p l t . r c ( ’ x t i c k ’ , l a b e l s i z e =16)
p l t . r c ( ’ y t i c k ’ , l a b e l s i z e =16)
f i g , ax = p l t . s u b p l o t s ( )
t i k s = [ 0 , 0 . 0 3 , 0 . 0 6 , 0 . 0 9 , 0 . 1 2

, 0 . 1 5 , 0 . 1 8 , 0 . 2 1 , 0 . 2 4 , 0 . 2 7 , 0 . 3 , 0 . 3 3 ]
bounds = t i k s
norm = c o l o r s . BoundaryNorm ( b o u n d a r i e s =bounds ,

n c o l o r s =256)
pcm = ax . pco lo rmesh ( x , y ,

np . t r a n s p o s e ( z ) , norm=norm , cmap= ’ j e t ’ )
c b a r = f i g . c o l o r b a r ( pcm , ax=ax ,

o r i e n t a t i o n = ’ v e r t i c a l ’ , t i c k s = t i k s )
p l t . a x i s ( [ x . min ( ) , x . max ( ) , y . min ( ) , y . max ( ) ] )
c b a r . s e t _ l a b e l ( r ’ $ \ s q r t {CRLB}$ f o r e s t . z (mm) ’ , s i z e =22)
ax . s e t _ y l a b e l ( ’Y (m) ’ , f o n t s i z e =26)
ax . s e t _ x l a b e l ( ’ x (m) ’ , f o n t s i z e =26)
p l t . show ( )
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