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a b s t r a c t

In order to non-invasively track a medical micro-device in gastrointestinal tract, an alter-
nating electromagnetic tracking method was presented and a prototype was developed. In
the tracking method, several energizing coils were excited by time-sharing sinusoidal sig-
nal to generate varying magnetic fields by one coil and then another coil. A wireless mag-
netic sensor measured the magnetic field strength at the location of the micro-device. The
root-mean-square value of the magnetic field strength is a high-order nonlinear system of
equations with respect to the position and orientation of the micro-device. Based on the
adaptive particle swarm optimization (PSO) with neighborhood search, the position and
orientation of the micro-device could be obtained. The experimental results show that
the tracking method is valid and the modified algorithm succeeds in dealing with the non-
linear system of equations in localization. Comparing to the standard PSO algorithm, it
does not require a good initial guess to guarantee convergence. Furthermore, it has high
precision and fast convergence.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction method employing a permanent magnet enclosed in mi-
In medical diagnosis and treatment, some implantable
medical micro-devices, such as wireless capsule endo-
scopes [1,2] and gastrointestinal monitoring capsules
[3,4], are widely used as a useful complementary diagnos-
tic tool without harmful impact on patient. Nevertheless, it
is hard for doctors to know the position of the capsules in
the GI tract. In order to improve the effect of diagnosis, we
must determine the position of the micro-devices.

Some traditional localization methods, including X-
rays, ultrasound and magnetic resonance imaging, need
large and expensive equipments and do not obtain the con-
tinuous track of the object. Recently, both the SMARTPILL
capsule in America and the M2A capsule in Israel were
localized by measuring energy of radio frequency (RF) sig-
nals. The positional precision of the method needs to be
further improved [5]. In addition, a magnetic tracking
. All rights reserved.

x: +86 21 55270695.
cro-devices was investigated [6–10]. As for the method,
the tracking scope was too small and the static magnetic
field generated by permanent magnets tended to be inter-
fered with background magnetic fields.

Considering that human body has magnetic permeabil-
ity practically the same as empty space, a novel electro-
magnetic localization method based on adaptive particle
swarm optimization (PSO) with neighborhood search was
presented. The magnetic field is non-invasive and thus it
is safe to be used in human body. In the localization meth-
od, several exciting coils were mounted above the patient’s
abdomen to generate a varying electromagnetic field by
individual coils alternately. We use a magnetic sensor to
measure the root-mean-square value of the magnetic field
strength at the location of the micro-device. The magnetic
field strength is high-order nonlinear function with respect
to the position and orientation of the micro-device. Thus
several simultaneous equations are formed and the posi-
tion and orientation of the micro-device can be computed
by an optimization algorithm. The position and orientation
of the micro-device could be obtained by solving the
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inverse problem of magnetic field. To simplify the calcula-
tion, the system of equations in the localization was trans-
formed into a nonlinear optimization problem. Then the
adaptive PSO with neighborhood search was employed to
resolving the optimization problem.

2. Localization system configuration

The localization system is made up of an alternating
electromagnetic field generator, a wireless magnetic sen-
sor, a wireless data recorder and a data processing sys-
tem. The block diagram of the whole system is shown
in Fig. 1a.

The alternating electromagnetic field generator is
mounted above the abdomen of patients when they lie
on the bed. It is composed of a waveform generator, a se-
quence-controller and eight excitation coils. The eight
excitation coils are excited one-by-one in sequence with
a sinusoidal signal to generate an alternating electromag-
netic field. The exciting frequency in the design is 9.26 kHz.

The wireless magnetic sensor must be mounted into or
onto the micro-device which needs to be tracked. It
employs micro-electro-mechanical system, wireless com-
munication and packaging techniques. The wireless mag-
netic sensor is sealed in a capsule shaped shell, which is
made of medical polycarbonate. The shell is about 9 mm
in diameter and 10 mm in length. As shown in Fig. 1b, it
is made up of the following functional blocks: batteries, a
power manager, an induction coil, a signal processor and
radio frequency (RF) transmitter. As long as there exist
available spaces inside or on the micro-device, the sensor
can be fixed and move along with the micro-device. The
root-mean-square values of induction electromotive forces
corresponding to the eight excitation coils can be mea-
sured and then transmitted to the wireless data recorder.

The wireless data recorder, which is composed of a RF
receiver and a flash memory card, is mounted around
waist. The output from the magnetic sensor can be wire-
lessly received by the RF receiver and then saved in the
memory card. All data in the memory card can be down-
loaded to the data processing system. By means of the
localization model [11] and the particle swarm optimiza-
tion algorithm, the position and orientation of the
micro-devices can be finally calculated and displayed in
the PC.
Fig. 1. Configuration of the localization system. (a) Block diagram o
3. Principle of localization

As illustrated in Fig. 2, a reference coordinate system
denoted by o—xyz is attached to human body. The navel
is taken as an origin. Z axis is perpendicular to the surface
of the back and points to the body. Y axis is parallel to the
spine and points to the head. Eight excitation coils are ar-
ranged on the abdomen surface of the body.

A moving coordinate system o0—x0y0z0 is attached to the
wireless magnetic sensor. The center of the wireless mag-
netic sensor is denoted by o0 and the central principal axis
is denoted by o0z0. The coordinate of point o0 relative to the
reference coordinate system is (x, y, z). The angle between
o0z0 and z axis is denoted by a and the angle between x axis
and the projection of o0z0 onto x—o—y plane is denoted by b.
When the wireless magnetic sensor rotated around its cen-
tral principal axis, its output does not change. Therefore,
only three positional coordinates and the above two angles
are relevant to the electrical signals output from the wire-
less magnetic sensor.

The excitation current is a sinusoidal signal given by
I ¼ Ip � sin xt, where Ip is the peak value of the sinusoid,
x is the angular frequency. And the radius of the excitation
coil is denoted by a. n represents the total turns of the exci-
tation coil. The central coordinate of excitation coil i is
ðpi; qi;0Þ. At point ðx; y; zÞ, the rate of change of magnetic
flux density generated by coil i is given as follows [11]:

dBix
dt ¼

nl0a2 Ip �x�cos xt
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where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� piÞ

2 þ ðy� qiÞ
2 þ z2

q
, i ¼ 1;2; . . . ;8; l0 is

the permeability in vacuum.
Based on the Faraday law of electromagnetic induction,

the wireless magnetic sensor [12] including an induction
coil generates an induced electromotive force. The electro-
motive force generated by coil i can be derived as follows:
f the localization system. (b) Modules of the magnetic sensor.



Fig. 2. Schematic diagram of the spatial position and orientation.
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ei ¼ �N � S � sin a � cos b sina � sin b cos a½ �

dBix
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dBiy
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dBiz
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2
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where N represents the total turns of the induction coil; S
represents the cross sectional area of the induction coil.

The root-mean-square values of electromotive forces
generated by coil i can be further simplified as follows:

ei
m ¼ �N � S � sin a � cos b sin a � sin b cos a½ �

VBi
mx

VBi
my

VBi
mz

2
664

3
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where ei
m is the root-mean-square values of electromotive

force generated by coil i; VBi
mx, VBi

my and VBi
mz is the root-

mean-square values of dBix=dt, dBiy=dt and dBiz=dt,
respectively.

Thus, the relation between the electromotive force and
the position and orientation of the wireless magnetic sen-
sor is finally established. Nevertheless, the system of equa-
tions with five variables is extremely complex. In order to
solve it, the equation set is converted to an objective func-
tion as follows.

min f ðPÞ ¼
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where P ¼ ½x; y; z;a; b�T ; P 2 U, U is the interval of the solu-
tion to the equation set.

The global minima to the objective function (4) can be
obtained only when the five variables equal to the solution
of the equation set. The objective function has multi-vari-
ables to optimize and quite a lot of local minima, which
results in difficulties in dealing with the function. Some
traditional algorithms, including Newton method, steepest
descent and least-square method, must require a good
initial guess to guarantee convergence. Hence the modified
PSO algorithm has been introduced to solve the localiza-
tion problem.

4. Adaptive particle swarm optimization with
neighborhood search

4.1. The standard PSO

The PSO is a swarm intelligence method for global opti-
mization [13]. First, let us define the notation adopted in
this paper: assuming that the search space is D-dimen-
sional, the ith particle of the swarm is represented by a
D-dimensional vector Xi ¼ ðxi1; xi2; xi3; . . . ; xiDÞ and the best
particle of the swarm, i.e. the particle with the smallest
objective function value, is denoted by index g. The best
previous position (i.e. the position giving the lowest func-
tion value) of the ith particle is recorded and represented
as Pi ¼ ðpi1 ; pi2 ; pi3 ; . . . ; piD Þ, and the position change (i.e.
velocity) of the ith particle is Vi ¼ ðv i1;v i2;v i3; . . . ;v iDÞ.

The particles are manipulated according to the follow-
ing equations:

Vnþ1
i ¼ xVn

i þ c1rn
i1ðP

n
i � Xn

i Þ þ c2rn
i2ðP

n
g � Xn

i Þ ð5Þ

Xnþ1
i ¼ Xn

i þ vVnþ1
i ð6Þ

where the superscripts denote the iteration; i = 1, 2, . . ., N, N
is the size of the population; v is a constriction factor which
is used to control and constrict velocities; x is the inertia
weight; c1 and c2 are two positive constants, called the cog-
nitive and social parameter respectively; rn

i1 and rn
i2 are two

random numbers uniformly distributed within the range
[0, 1].

In PSO, the problem solution space is formulated as a
search space. Each particle position in the search space is
a candidate solution to the problem. Particles cooperate
to determine the best position in the search space.

4.2. Decaying values of parameters

In order to improve PSO’s performance on the localiza-
tion problem, we introduced adaptive parameters in
Eq. (5), resulting in better convergence rates. And then in
the final stage Powell algorithm was employed to perform
neighborhood search to speed up the convergence.

In the preliminary stage, we attempted to decay the val-
ues of the inertia weight and the social parameter for the
PSO algorithm. In the PSO method, each particle (or poten-
tial solution) is assigned with a random velocity and flown
through the solution parameter space. Each potential solu-
tion retains the coordinates and the best fitness value asso-
ciated with the best solution that particle achieved so far.
This solution is referred to as PBEST (i.e. the personal best
solution). The PSO algorithm also maintains the coordi-
nates and the value of the best solution achieved by the
whole population. This solution is known as GBEST (i.e.
the global best solution). The particles make very large
movements, thereby scanning the whole parameter space
for the global minima. The inertia weight x regulates the
trade-off between the global and the local exploration
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abilities of the swarm. A large inertia weight facilitates glo-
bal exploration, while a small one tends to facilitate local
exploration. The social parameter c2 represents the collab-
orative effect of the particles, in finding the global optimal
solution. The social component always pulls the particles
toward the global best particle found so far.

The adaptive parameter values for PSO were changed
using the following equations:

xðtÞ ¼ xmax �
t

max
� ðxmax �xminÞ ð7Þ

c2ðtÞ ¼ cmin þ
t

max
� ðcmax � cminÞ ð8Þ

where max is total number of iterations, t is current itera-
tion number.

We achieved the GBEST solutions by PSO algorithm
in the early stage. Considering that PSO did not possess
the ability to perform a fine grain search to improve
upon the quality of the solutions as the number of gen-
erations was increased [14], Powell algorithm was then
employed to perform a fine grain search in the final
stage. This solution can be discovered by using Powell
algorithm to inspect all GBEST solutions within a
neighborhood.

4.3. Algorithmic description of modified PSO

In the localization problem, the desired optimization
fitness function is defined in function (4). The steps of
applying the modified PSO method in the localization
problem are outlined as follows:

(1) Initialize a population of particles with random posi-
tions and velocities in the problem space.

(2) Assign the initial value to the inertia weight denoted
by x, the cognitive parameter denoted by c1, the
social parameter denoted by c2, the desired accuracy
denoted by e1, the maximum number of iterations
denoted by max.

(3) Evaluate the fitness value of all particles. Compare
particle’s fitness evaluation with particle’s PBEST. If
current value is better than PBEST, then set PBEST
value equal to the current value, and the PBEST loca-
tion equal to the current location in the problem
space.

(4) Compare fitness evaluation with the population’s
overall previous best. If current value is better than
GBEST, then reset GBEST to the current particle’s
array index and value.

(5) Update the velocity of the particle according to the
following equation:
Vnþ1
i ¼ xVn

i þ c1rn
i1ðP

n
i � Xn

i Þ þ c2rn
i2ðP

n
g � Xn

i Þ:
(6) A particle’s velocity on each dimension is clamped to
a maximum magnitude. If the velocity of the particle
exceeds a positive constant value vmax, then the
velocity is assigned to vmax. If the velocity of the par-
ticle is less than a constant value vmin, then the
velocity is assigned to vmin.
(7) Update the position of the particle according to the
following equation:
Xnþ1
i ¼ Xn

i þ vVnþ1
i :
(8) Change the parameter values for the PSO using the
following equation:
xðtÞ ¼ xmax �
t

max
� ðxmax �xminÞ; c2ðtÞ

¼ cmin þ
t

max
� ðcmax � cminÞ:
(9) Loop to step (3) until a stop criterion is satisfied or a
prespecified number of iterations is completed. Then
the GBEST position of the particles can be obtained
as the initial value of Powell algorithm.

(10) Employ Powell algorithm to inspect all GBEST solu-
tions within a neighborhood. If a stopping condition
is satisfied, this solution to the localization problem
can be achieved.

5. Experimental results

In order to prove the feasibility of applying the modified
PSO in the localization problem, a simulation experiment
was performed. Substitute a value of the position and ori-
entation ðx0; y0; z0;a0; b0Þ into the localization equation
defined in (3), then an electromotive force ei

m can be calcu-
lated. Taking the electromotive force as known, we can in-
versely substitute the calculated data ei

m into Eq. (4). Thus
an objective function for localization is obtained with five
variables ðx; y; z;a; bÞ. The objective function was solved
by the standard PSO and the modified PSO algorithms,
respectively.

For both algorithms, 100 different situations were cal-
culated, starting with a population of particles with ran-
dom positions and velocities in the problem space.
Besides, the desired accuracy was 10�5. During a prelimin-
ary experiment, we used four swarm sizes (N = 20, 40, 60,
and 80) to test both algorithms. Regarding the four differ-
ent parameters, N = 20 exhibits low success rates in detect-
ing the global minimum within the maximum number of
allowed function evaluations. When the swarm’s size is
bigger than 40, the success rate is not yet improved and
the processing time is increasing with the increasing of
the swarm’s size. The outcome of N = 40 was the best, so
the value was used in all further tests.

For the standard PSO algorithm, the inertia weight x
was set equal to 0.8; c1 ¼ c2 ¼ 2; the maximum number
of allowed function evaluations was set to 5000. For the
modified PSO algorithm, the inertia weight x was gradu-
ally decreased from 1.2 towards 0.65; the social parameter
c2 was gradually increased from 0.6 towards 1.6. In addi-
tion, the maximum number of iterations was set to 1000;
vmax was set to 0.02 and vmin was set to �0.02. The perfor-
mance of the modified PSO algorithm applied in localiza-
tion was investigated by compare the results of the
modified PSO and the standard PSO, as shown in Table 1.

For both algorithms, the average of the required num-
ber of iterations and the success rate in detecting the glo-
bal minimum of the localization problem within the
maximum number of iterations are reported in Table 1.



Table 1
Comparison of the performance for the standard and the modified PSO
algorithm.

Algorithm The average number
of iterations

Success rate
(%)

The standard PSO 1859 57.27
The modified PSO 433 100

Fig. 4. The photo of the experimental apparatus.
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The standard PSO did not possess the ability to perform a
fine grain search to improve upon the quality of the solu-
tions as the number of generations was increased. Instead,
the modified PSO discovered reasonable quality solutions
much faster than the standard PSO. The modified PSO guar-
antees the convergence and improves the convergence
velocity. It outperformed the standard PSO, in terms of
the mean number of required iterations. Moreover, the
behavior of the modified PSO seems to be stable for solving
the localization problem, exhibiting high success rates.

The solution found by the modified PSO for the localiza-
tion problem is denoted by ðx00; y00; z00;a00; b

0
0Þ. The following

equations were introduced to show the precision:

Da ¼ ja00 � a0j ð9Þ

Db ¼ jb00 � b0j ð10Þ

Dr ¼ ðDx2 þ Dy2 þ Dz2Þ1=2 ð11Þ

where Da, Db is the error component of angle a, b, respec-
tively; Dr is the resultant errors, Dx, Dy, Dz is the error
component of x, y, z, Dx ¼ jx00 � x0j, Dy ¼ jy00 � y0j,
Dz ¼ jz00 � z0j:

From the experiment, we can conclude that the mean
error component of x, y, z is 0.0023 m, 0.0024 m,
0.0026 m, respectively. The mean error component of an-
gle a, b is 0.0336 rad, 0.0354 rad, respectively. The distri-
bution of the resultant errors Dr is illustrated in Fig. 3.
The resultant errors range from 0.0013 m to 0.0091 m.
The mean value of the resultant errors is 0.0044 m. The
experiment shows that the modified PSO algorithm suc-
ceeds in resolving the localization problem, independent
of initial value.

In order to prove the validity of applying the modified
PSO method in localization, the localization experiment
was performed. A position and orientation measuring
Fig. 3. Distribution of the resultant errors.
instrument (POMI) was developed to measure the position
and orientation (P&O) of the target. As shown in Fig. 4, the
reference coordinate system denoted by o-xyz was set up
in the POMI. The position of the target is described by
the coordinates in the reference coordinate system and
the orientation is determined based on Euler angle. The
positional coordinates and attitude angles of the target
could be arbitrarily adjusted and directly obtained by the
indicating dials of the POMI. The adjusting steps are de-
scribed as follows. Firstly, the object is movable along the
guiding pole and the supporting pole. Secondly, the object
can rotate around the axis of the supporting pole. Finally,
the object can rotate around z axis as well. On glass plane
of the POMI, all the excitation coils are cylinder in shape,
20 mm in diameter and 5 mm in length. The total number
of turns in each coil is 400.

Arbitrarily changing the position and orientation of the
magnetic sensor through the POMI, many groups of output
data were recorded. Based on these data, the position and
orientation were calculated by the modified PSO. In the
meanwhile, the real position and orientation were directly
read by means of the POMI. Comparing the calculated re-
sult with the real value, we could test the validity of the
modified algorithm.

In the localization experiment, the orientation errors
range from 0.0019 to 0.2302 rad. The mean error of angle
component is about 0.1216 rad. The distribution of the
position errors is shown in Fig. 5. The maximum error com-
ponent of x, y and z is 0.031 m, 0.034 m, 0.029 m, respec-
tively. The mean error component of x, y and z is
0.011 m, 0.014 m, 0.010 m, respectively.

In conclusion, the modified PSO is a valid method to
deal with the nonlinear system of equations in localization.

The mean error components in the localization experi-
ment are much larger than those in the simulation exper-
iment. It is because that the errors in the simulation
experiment are brought about only by the algorithm. In
the algorithm the finite calculation is performed to ap-
proach to the real solution. Instead, in the localization
experiment, the errors are mainly due to the localization
model and the measurement instruments. The algorithm
is only a minor contributor to errors, compared to the mod-
el and the instruments. In the modeling, the truncated ser-
ies bring about the model error. With the decreasing of the
distance r between the center of the magnetic sensor and
the origin of the reference coordinate system, the model
errors get bigger. While r is more than 0.3 m, the model



Fig. 5. Distribution of the position errors. (a) Error component of x. (b) Error component of y. (c) Error component of z.

Table 2
Localization errors for different porcine tissue.

Media Error
component

The number of samples Mean
error
(m)

0 < D 6 0.02 m 0.02 < D 6 0.04 m

Meat Dx 81 19 0.013
Dy 83 17 0.015
Dz 76 24 0.010

Stomach Dx 83 17 0.012
Dy 82 18 0.015
Dz 75 25 0.010

Large
intestine

Dx 82 18 0.014
Dy 84 16 0.016
Dz 76 24 0.011

Small
intestine

Dx 80 20 0.013
Dy 81 19 0.016
Dz 74 26 0.011

Empty space Dx 84 16 0.011
Dy 85 15 0.014
Dz 78 22 0.010
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error is small. Meanwhile, the signal intensity received by
the magnetic sensor sharply decreases, which results in a
low signal-to-noise ratio. Both the noise produced by the
circuit and the background interference lowered the mea-
surement precision. In addition, the alternating magnetic
field will inevitably be distorted due to the eddy currents
induced in nearby metals when the field is changing.
Therefore metal objects in the vicinity of excitation coils
may reduce the localization accuracy.

In order to estimate the influence of body tissue, por-
cine body tissue including layers of meat, stomach, large
intestine and small intestine from freshly killed pig was
used. The layers of meat included skin, fat, muscle and
rib bones, which was about 6 cm thick and weighted
5 kg. The wireless magnetic sensor was embedded in the
porcine tissue. For each kind of tissue, the localization
experiments were performed and the position error is ana-
lyzed in Table 2.

The experimental results show that porcine body tissue
has little effect on the localization method. This is expected
because porcine tissue has magnetic permeability practi-
cally the same as empty space. Thus its loss in the low fre-
quency electromagnetic field is expected to be small.
6. Conclusions

In this paper, we investigated the performance of adap-
tive PSO with neighborhood search applied into the local-
ization problem. In particular, we proposed a number of
improvements including time-varying inertia weight val-
ues and the social parameter values, introducing Powell
algorithm for performing a fine grain search within a
neighborhood.
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The experimental results show that the modified PSO is
a valid method to deal with the nonlinear system of equa-
tions in localization. The standard PSO did not possess the
ability to perform a fine grain search to improve upon the
quality of the solutions as the number of generations was
increased. Instead, the modified PSO discovered reasonable
quality solutions much faster than the standard PSO. Inde-
pendent of initial values, the modified algorithm displays
very high success rate and improves the convergence
velocity. Furthermore, it has high precision.
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