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A New Method for Choosing the Regularization
Parameter in Time-Dependent Inverse Problems

and Its Application to Magnetocardiography
Jörg Schreiber, Jens Haueisen, Member, IEEE, and Jukka Nenonen

Abstract—The current density estimation on the epicardial sur-
face of the heart based on electrocardiographic and magnetocar-
diographic measurements is one example of an ill-posed inverse
problem. Commonly, zeroth-order Tikhonov regularization is ap-
plied to solve such problems. A few methods exist for the deter-
mination of the critical regularization parameter. However, none
of these methods performed sufficiently in our application. In this
paper, we propose a new method for choosing a regularization pa-
rameter for a time interval. Our basic assumption for this method
is that the optimal solution norm must reflect the temporal prop-
erties of the magnetic energy. The performance of our method is
tested both on simulated data and patient data.

Index Terms—Biomagnetics, boundary-element methods,
cardiography, inverse problems.

I. INTRODUCTION

MAGNETOCARDIOGRAPHY (MCG) provides nonin-
vasive information about the electrical activity of the

heart [1]. Estimating and imaging the current density distribu-
tion on the epicardial surface of the heart can help diagnose
myocardial infarction and other heart diseases. The determina-
tion of this current density distribution requires the solution of
an ill-posed inverse problem. Zeroth-order Thikonov regulariza-
tion is a commonly applied technique for stabilizing such solu-
tions and leads to the following minimization term:

(1)

where is the measured magnetic field vector, is the lead-
field (kernel) matrix, is the current density vector, is the
regularization matrix, and is the regularization parameter. The
equation states that both the residual norm (first term) and the
solution norm (second term) should be minimized, whereby the
regularization parameter acts as a weight between these terms.
The specification of a reasonable value for is often very dif-
ficult and a few, mainly empirical methods have been proposed
[2]–[5]. The -curve [2] and the [3] criteria are two methods
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Fig. 1. Normalized MGFP integral (dotted line) and current density solution
integral (solid line) over the regularization parameter �. The gray lines indicate
the tangent and the intersection with the MGFP integral in our empirical method
for estimating �.

most frequently used. However, none of these methods per-
formed well in our application consisting of time interval source
reconstructions in patients with myocardial infarction.

Analyzing time intervals is of great importance in MCG [and
also in magnetoencephalography (MEG)]. A possible approach
is to determine the regularization parameter for every time point,
but in many cases it is convenient to use a mean value for the
entire interval. Based on the assumption that the solution should
follow the properties of the magnetic energy of the signal, our
aim was to develop an algorithm to determine the regularization
parameter.

II. METHODS

A. New Method

The mean global field power (MGFP) is tantamount to the
norm of the magnetic field vector, which can be considered as
its discrete integral over space. Integrating this value over a cer-
tain time leads to a measure of the main magnetic field energy
contained in the signal. Analogously, the current density dis-
tribution, which depicts the source for this energy, can be con-
sidered the same way. From a physical point of view in terms
of energy conservation, the normalized MGFP and the current
density norm should behave similarly as soon as the optimal reg-
ularization parameter is met. For example, those parts in the
MGFP signal containing zero signals should not contribute to
the solution. Thus, we normalized both the MGFP and the cur-
rent density solution, integrated all values, which were in the
time interval considered and above the respective noise levels

, and plotted the two integrals for each (Fig. 1). Then,
a tangent was fitted to the current density solution integral, such
that it represented the maximum curve slope (gray line in Fig. 1).
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Fig. 2. Normalized squared error over 1—correlation coefficient. The
comparison is performed between the strength of the original dipole
distribution and the dipole strength of the CDR result.

The optimal parameter was chosen empirically from the in-
tersection of that tangent with the MGFP integral (dotted line in
Fig. 1).

In order to test our method, we performed simulations and an-
alyzed patient data. We compared the results obtained with our
method to the results obtained with the often used the -curve
[2] and the [3] criteria.

B. Simulations

We modeled the QRS interval (depolarization of the heart,
see Fig. 4) of the human heart cycle with the help of 13 dipoles
placed around the left ventricle (normal to its surface) repre-
senting the basal, medial, and apical slice with each containing
the four anatomical directions anterior, lateral, inferior, and
septal. The apex was represented by a separate dipole. Each
dipole was fixed in direction and the strength varied over
time with a Gaussian shape (maximum of 1 ), which
was shifted for each dipole according to the measurements
in [6]. For the field computation, we used a high-resolution
boundary-element model including the torso (10-mm triangle
side length), the lungs (6 mm) and the ventricles (3 mm)
[7]. This model was constructed out of a three–dimensional
(3-D) magnetic resonance imaging (MRI) data set of a healthy
volunteer. The magnetic field data were calculated in 64
magnetometers arranged in an 8 8 array in front of the torso.
The forward calculated fields were disturbed with Gaussian
noise using three different noise levels (0.01, 0.05, and 0.1 pT)
and provided the input to our minimum norm current density
reconstruction (CDR). The optimal regularization parameter,

, was determined by comparing the strength of the solution
from the CDR calculations with the strength of the original
dipole distribution. We calculated both the correlation coeffi-
cient (CC) and the norm square error (NSE) between the values
in each source point and for each time point. The optimal
parameter results from the plot NSE versus 1-CC (Fig. 2).

C. Patient Data

We tested our new method for determining with realistic
MCG measurement data [8]. Here, could be estimated by
comparing the CDR with positron emission tomography (PET)
data. We used the data of five patients suffering from coronary

Fig. 3. Bull’s eye plots of the left ventricle for (a) positron emission
tomography and (b) current density reconstruction data (ant—anterior,
sep—septal, lat—lateral, inf—inferior).

artery disease and having a history of myocardial infarction.
The presence of coronary artery disease was proven by coro-
nary angiography and wall motion abnormalities in left ventric-
ular angiography. All patients underwent MRI, MCG, and PET
imaging within ten days.

MRI data were recorded with a 1.5 T Siemens Magnetom
Vision (Siemens, Erlangen, Germany). Thirty-nine ECG-gated
contiguous transversal images were recorded during free respi-
ration using a TurboFLASH sequence. The pixel size and the
slice thickness were 1.95 1.95 mm and 10 mm, respectively.
Patient specific boundary-element models (including triangu-
lated surfaces of the torso, the left and right lungs, the left and
right ventricles) were constructed out of the MRI data sets.

PET data were recorded with an ECAT 931/08-12
(Siemens/CTI, Knoxville, TN). A series of 16 contiguous
transmission and emission images was recorded. Transmission
images were used for the attenuation correction of emission
images and also provided topographical information that was
utilized for registration purposes. For both transmission and
emission images, the pixel size and the slice thickness were
2.41 mm 2.41 mm and 6.75 mm, respectively. The PET data
were visualized using the common bull’s eye plots.

MCG data were recorded by using a 67-channel biomag-
netometer with 7 axial and 60 planar first-order gradiometers
(Neuromag, Helsinki, Finland). Recordings were taken at rest
in supine position. The sampling rate was 1000 Hz. CDRs were
performed based on the MCG data and, for the sake of compar-
ison, plotted analogously to the bull’s eye plots of the PET data.
Fig. 3 shows one example of the PET data and a CDR result.
The value for was determined by the best match between
the PET and CDR result. In this procedure, was varied manu-
ally between 10 and 10 .

III. RESULTS

A. Simulations

Although our newly proposed method performed better
than the other methods, the method produced similar
results (Table I). Since only Gaussian noise was used, a good
performance of the method was expected.

Fig. 4 shows the simulated QRS signal disturbed by 0.1-pT
Gaussian noise and the reconstructed current density am-
plitudes. With increasing , the solution norm more closely
resembles the MGFP curve, which is not necessarily a sign
for a well-chosen regularization parameter. The norm of the
original current density distribution (also plotted in Fig. 4)
illustrates this fact. Moreover, it becomes clear that even the
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TABLE I
SIMULATION RESULTS

Fig. 4. Original current density (orig CD), simulated QRS signal (MGFP),
and reconstructed current density amplitudes for � values of 0.000 01, 1, and
100 000. All curves were normalized to their respective integral over the entire
time interval.

shape of the MGFP curve and the original source curve can
vary considerably inside intervals containing a nonzero signal.

However, since all curves were normalized separately with
the help of their respective integrals over time, the absolute am-
plitudes of the five curves cannot be compared directly. If is
increased from 1 to 100 000 the squared error will increase dra-
matically, while the correlation will getting slightly better, like
depicted in Fig. 2. This is a consequence of changing the weight
of the reconstruction algorithm in favor of minimizing the solu-
tion norm. At some points (for a certain regularization param-
eter) the shape of the reconstructed current density distribution
is basically “frozen” and does not exhibit major changes any
longer. Only the amplitude is further decreasing when the reg-
ularization parameter is increased. As a result the influence of
the residual [first term in (1)] vanishes.

B. Patient Data

Again, our new method performed best (Table II), where the
-curve method gave in one case two orders of magnitude, in

two cases one order of magnitude, and in two cases less than one
order of magnitude of less accurate regularization parameters.
The method failed since it produced values below 10 in all
cases. Therefore, these values were not included into Table II.
The presence of non-Gaussian noise (inherent to real-patient
data) most likely yielded the failure of the method.

TABLE II
PATIENT DATA RESULTS

Fig. 5. QRS signal (MGFP) of patient #4 and reconstructed current density
amplitudes for � values of 1, 0.1, and 0.001. All curves were normalized to their
respective integral over the entire time interval. The larger amplitudes (y-axis),
as compared to Fig. 4, are due to the shorter QRS time interval in this patient.

One example of the QRS MGFP signal for patient 4 and the
reconstructed current density amplitudes are given in Fig. 5. As
in Fig. 4 (simulated data), we observe that the reconstructed cur-
rent density amplitudes reach their maximum before the QRS
signal reaches the maximum. However, the effect is less pro-
nounced in the patient data (Fig. 5).

IV. DISCUSSION

Both simulations and patient data showed that our new
method performs better than the commonly applied -curve
and methods. However, the optimal regularization parameter
was not reached yet in some cases. Therefore, further research
will focus on the inclusion of a constraint for temporal smooth-
ness of the solution. Moreover, spatial smoothness in the source
space might give additional insight into the correctness of the
regularization parameter choice.

For the estimation of in the five patients, we compared
the PET and CDR bull’s eye plots only visually. We found the
best match between PET and CDR relatively stable for values of

varying around one order of magnitude. We have therefore
chosen the respective mean value of in Table II.

Although our modeling is based on realistic, patient specific
geometries employing the boundary-element method, it does
not take fiber anisotropy into account. The inclusion of fiber
anisotropy can potentially improve current density reconstruc-
tion results [9]. Additionally, higher information content of the



SCHREIBER et al.: NEW METHOD FOR CHOOSING THE REGULARIZATION PARAMETER IN TIME-DEPENDENT INVERSE PROBLEMS 1107

MCG data as, e.g., obtained by measurements of all three com-
ponents of the magnetic vector (currently only one magnetic
field component is measured by most commercial devices) will
further improve the inverse solution [10], [11].

V. CONCLUSION

We proposed a new method for choosing the regularization
parameter in the solution of ill-posed inverse problems with the
help of zeroth-order Thikonov regularization. Both simulations
and patient data analysis confirmed the superior performance of
our method as compared with the commonly applied -curve
method and method.
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