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ABSTRACT

 
Dynamic estimation methods based on linear state-

space models have been applied to the inverse problem of 
magnetoencephalography (MEG), and can improve source 
localization compared with static methods by incorporating 
temporal continuity as a constraint.  The efficacy of these 
methods is influenced by how well the state-space model 
approximates the dynamics of the underlying brain current 
sources.  While some components of the state-space model 
can be inferred from brain anatomy and knowledge of the 
MEG instrument noise structure, parameters governing the 
temporal evolution of underlying current sources are 
unknown and must be selected on an ad-hoc basis or 
estimated from data.  In this work, we apply the 
Expectation-Maximization (EM) algorithm to estimate 
parameters and sources in an MEG state-space model and 
demonstrate in simulation studies that the resulting source 
estimates are superior to those provided by static methods or 
dynamic methods employing ad hoc parameter selection. 
 

Index Terms— MEG inverse problem, Kalman Filter, 
Fixed Interval Smoother, parameter estimation, EM 
algorithm 

1. INTRODUCTION 
 
Advances in medical imaging over the past several 

decades have provided researchers with the tools necessary 
to non-invasively assess human brain function in normal 
and disease states.  Magnetoencephalography (MEG) is one 
such technique that measures the magnetic fields generated 
by neuronal currents associated with brain activity [1].  The 
ill-posed nature of the electromagnetic inverse problem and 
the relatively large distance between the sensors and the 
sources restrict the spatial resolution of MEG [1].  However, 
MEG permits observation of neural events on a time-scale 
of milliseconds, revealing brain dynamics that cannot be 
seen with slower imaging modalities such as functional 
magnetic resonance imaging (fMRI) or positron emission 
tomography (PET). 

Established methods for MEG source imaging, such as 
the minimum-norm estimate (MNE) [2,3], provide static 
estimates where each time point is treated independently.  
Recently, dynamic estimation methods have been applied to 
electroencephalography (EEG) and MEG data.  Galka, et al. 
[4] used a random walk model with a Laplacian spatial 
smoothness constraint to represent the dynamics of EEG 
source currents, and estimated these source currents using 
the Kalman filter (KF) and recursive least-squares 
algorithms. Long, et al. [5, 6] proposed a similar random 
walk model for MEG source currents, and estimated these 
sources using both the causal KF and the Fixed Interval 
Smoother (FIS) algorithms.  The temporal-continuity 
constraint introduced by these methods not only improved 
the estimation of the source time-series, but also resulted in 
improved spatial localization. Temporal and spatial 
improvements were greater for the FIS algorithm, due to the 
fact that the FIS uses the entire data record to estimate the 
source currents [5, 6]. 

The efficacy of these dynamic methods is strongly 
influenced by how well the state-space model approximates 
the dynamics of the underlying brain current sources.  
While some components of the state-space model can be 
inferred from brain anatomy and knowledge of the noise 
structure of the MEG instrument, parameters governing the 
temporal evolution of the current sources are unknown and 
must be selected on an ad-hoc basis or estimated from data.  
In this work, we apply the Expectation-Maximization (EM) 
algorithm to estimate parameters and sources in an MEG 
state-space model, and demonstrate in simulation studies 
that the resulting source estimates are superior to those 
provided by static methods or dynamic methods employing 
ad hoc parameter selection. 

 
2. METHODS 

 
2.1 State-Space Model for MEG 

In an MEG experiment, we obtain a recording of the 
magnetic field from hundreds of sensors located outside the 
head. For N large, assume that the data are sampled at times 
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t  for t = 1,…,N.  Let ys(t ) denote the measurement at time 
t  in sensor s = 1,…S. We define yt = [y1(t ),…,yS(t )] to be 
the S 1 observation vector at time t . We assume that there 
are M sources. Let xm(t ) denote the cortical source activity 
at time t  at location m, where m = 1,…,M. We define xt = 
[x1(t ),…, xM(t )] as the M 1 state vector. The relationship 
between the observations vector and the state vector is given 
by the observation equation 
 

ttt vGxy ,     (1) 
 
where G is an S M lead field matrix computed using a 
quasistatic approximation of the Maxwell’s equations [1], 
and vt is the S 1 vector of zero mean Gaussian noise with 
covariance matrix C representing the background machine 
noise. We assume that xt follows the spatio-temporal model 
 

t
mNm
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similar to that proposed in [4], where a and b are scalars 
such that a + b = 1,  N(m) is the neighborhood of source m, 
qm is the number of neighbors of source m, and wt is a M 1 
zero mean Gaussian noise vector with covariance matrix 
Q diag( 1

2 , 2
2 , , M

2 ) . We can rewrite Eq.2 as the 
multivariate autoregressive model 
 

ttt wxFx 1 ,    (3)     
 
where the transition matrix F encompasses the 
neighborhood interactions between the sources at time t in 
terms of the sources in the previous time step. The initial 
value x0 is assumed to be a Gaussian vector with mean μ and 
covariance matrix . Equations (1) and (3) define the state-
space model for MEG. 
 
2.2 Maximum Likelihood Estimation Using the 
Expectation-Maximization (EM) algorithm 
 

In the above model, the lead field matrix G can be 
computed using the boundary-element model based on high-
resolution magnetic resonance images (MRI) [7], and the 
observation noise covariance C can be estimated from 
empty room recordings.  The state transition matrix F can 
be set to the identity matrix, or to incorporate local spatial 
smoothing as in [2].  The remaining unknown parameter is 
the state (source current) noise covariance matrix Q.  In this 
section we present an EM algorithm for estimating Q.  This 
algorithm makes use of the fact that, under the Gaussian 
state-space model described in 2.1, the conditional 
expectations for the E-step of the EM algorithm are 
provided by the FIS [8]. 

The joint likelihood of the complete data x0,…, xN, y1,…, 
yN can be written in the form 
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where L is to be maximized with respect to the parameter 
matrix  = Q. Since the log likelihood depends on the 
unobserved time series xt, t = 1,…,N, the EM algorithm is 
applied conditionally with respect to the observed series yt, t 
= 1,…,N, as demonstrated in [9] 
 

Nr yyyLEG ,,|log 2,1 ,   (5) 
 
where Er denotes the conditional expectation relative to  the 
density containing the rth iterate value Q(r). In order to 
calculate the conditional expectation in Eq. (5), it is 
convenient to define the conditional mean 
 

),,|( 2,1| NtNt yyyxEx ,   (6) 
 
and covariance functions 
 

),,|cov( 2,1| NtNt yyyxP    (7) 

),,|,cov( 2,11|1, NttNtt yyyxxP .  (8) 
 

Taking conditional expectation in Eq. (4) yields 
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where 
 

B Pt 1 | N xt 1 | N xt 1 | N
T

t 1

N

,   (10) 

D Pt, t 1 | N xt | N xt 1 | N
T

t 1

N

,  and  (11) 

H Pt | N xt | N xt | N
T

t 1

N

.   (12) 

 
Choosing 
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where 
 
Z H DF T F DT F BF T    (14)  
 
maximizes line 2 in equation (9).  As in [9], the first line in 
equation (9) is analogous to a single replication of a normal 
likelihood so that one may take μ(r + 1) =  x0|N and (r + 1) 
= P0|N. The estimates xt|N, t|N and t,t-1|N for the rth iterate 
are computed using the value Q(r + 1), μ(r + 1) and (r + 1) 
using the FIS [8] and the one-step covariance algorithm [9]. 

We set the structure of the state transition matrix F in 
the FIS computation such that a = 0.5 and b = 0.5. We begin 
by computing a static estimate with the MNE method, 
xMNE,t=1, using y1, the observation noise covariance from the 
MEG background noise C, and the source covariance R = I 
where trace(HRHT) / trace(C) = 1. Then we compute MNE = 
cov(xMNE). At last, we set μ(0) = xMNE,t=1,  (0) = MNE, Q(0) 
= R, and iterate until the log likelihood converges. The 
value of the log likelihood is calculated using the 
‘innovations’ form [10]: 
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2.3 Simulation Studies

We employed simulation studies to compare source 
localization performance of the static (MNE), dynamic 
(FIS), and EM solutions. We constrained the source 
locations to the cortical mantle with about 6-mm spacing 
between adjacent sources [3]. We chose regions of interest 
(ROIs) in the medial surface and the temporal lobe of the 
left hemisphere as shown in Figure 1.  The medial ROI 
contains 75 sources, while the temporal ROI contains 181 
sources.  We restricted the dimensionality of the problem to 
reduce computational complexity, with the rationale that 
higher-order versions could be implemented later using 
high-performance computing resources as in [6]. We 
computed the lead field matrix for sources in the two ROIs 
with dipole orientations constrained to the normal of the 
cortical mantle assuming the sensor configuration of the 
306-channel Vectorview MEG system (Elekta-Neuromag, 
Helsinki, Finland) used at our Center. 

  
Figure 1. Reconstructed cortical surface from structural 
MRI scans and ROIs. 

 
The time course of the the sources on each ROI was 

simulated as a 10-Hz sinusoidal oscillation over a period of 
1 second in order to emulate a realistic MEG experiment: 

xm (t )
sin(2 10t ) if xm is active

0 if xm is inactive
, (16) 

where the sampling frequency 1/  is 200 Hz. The 
percentage of active sources in both simulations was 
approximately 20 percent. The observation equation (1) was 
then used to obtain the simulated MEG recordings. The 
signal-to-noise ratio (SNR) was set to 5, a value typical for 
MEG measurements [1], with signal amplitudes scaled 
uniformly across the active regions to achieve this SNR. 
 

3. RESULTS AND DISCUSION 
 

Figures 2 and 3 show the source current estimates for 
the medial and temporal ROIs, respectively, estimated using 
the MNE, FIS, and EM algorithms.  In both cases, sources 
estimated using the EM algorithm (upper right) show a 
much closer correspondence to the true simulated source 
distribution (upper left) than either the MNE or FIS 
algorithms (lower right and left, respectively).  

 

  

  
Figure 2.  Source localization results from medial ROI. 
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Figure 3. Source localization results from temporal ROI. 

 
In accordance with Figures 2 and 3, the EM time 

courses show the closest correspondence to the true source 
time course. Figure 4 shows the time-course estimates from 
two representative source locations.  

 

 
Figure 4.  Comparison of source current time-course 
estimates. The simulated source is shown in blue, the EM 
algorithm estimate in red, the FIS estimate in black, and 
the MNE in green. 

4. CONCLUSIONS AND FUTURE WORK 
 
We applied the Expectation-Maximization (EM) 

algorithm to estimate parameters and sources in an MEG 
state-space model, and demonstrated in simulation studies 
that these estimates significantly improve MEG source 
localization and time-course estimates compared to static or 
dynamic methods relying on ad hoc parameter selection. 
These findings highlight the importance of parameter 
estimation for an accurate state-space representation of the 

MEG inverse problem.  Our future studies will examine 
performance of these methods on experimental data from 
human subjects and will also employ high-performance 
computing methods and resources so that the entire cortical 
surfaces can be analyzed.   
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