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Brain Source Localization Using a Fourth-Order
Deflation Scheme
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Abstract—In this paper, a high-resolution method for solving
potentially ill-posed inverse problems is proposed. This method
named FO-D-MUSIC allows for localization of brain current
sources with unconstrained orientations from surface electroen-
cephalographic (EEG) or magnetoencephalographic (MEG) data
using spherical or realistic head geometries. The FO-D-MUSIC
method is based on the following: 1) the separability of the
data transfer matrix as a function of location and orientation
parameters, 2) the fourth-order (FO) virtual array theory, and
3) the deflation concept extended to FO statistics accounting
for the presence of potentially but not completely statistically
dependent sources. Computer results display the superiority of
the FO-D-MUSIC approach in different situations (very closed
sources, small number of electrodes, additive Gaussian noise
with unknown spatial covariance, etc.) compared to classical
algorithms.

Index Terms—Backward problem, electroencephalography
(EEG), fourth-order (FO) statistics, magnetoencephalography
(MEG), multiple signal classification (MUSIC), sequential source
localization.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) and mag-
netoencephalography (MEG) are two complementary

techniques measuring, at the surface of the head, electrical
potentials and magnetic fields produced by neuronal activity,
respectively. The localization of the sources of this neuronal
activity (during either cognitive or pathological processes) re-
quires to solve the inverse problem, i.e., to localize sources only
from surface recordings. In the general case, the EEG/MEG
inverse problem is an ill-posed and underdetermined problem,
as the number of sources is larger than the number of mea-
surement points. To overcome this difficulty, some localization
techniques assume a lower number of sources to be localized
than the number of sensors positioned on the scalp, in order
to make the problem overdetermined. It is noteworthy that the
inverse problem is not specific to the field of neurophysiology,
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but it can be found in many other areas such as digital radio
communications [12].

The solution of the inverse problem implies that a model of
sources and a model of volume conductor are defined. In the
study of cerebral activity, the current dipole is the most com-
monly used model for a source of electrical activity in the brain,
as it is a biophysically relevant representation of a small cortical
area activity. As neuronal electromagnetic fields are sensitive to
geometrical and electrical properties of the different head tissues
(brain, bone, and skin), the head can be modeled either by a set
of nested concentric spheres with homogeneous and isotropic
conductivities [20], or by realistically shaped models built from
3-D anatomical data [magnetic resonance imaging (MRI)], with
refined tissue conductivity values [10].

During the last three decades, many array processing methods
were developed to estimate multidimensional parameters of
sources such as localization parameters. In particular, among
subspace approaches, the second-order (SO) multiple signal
classification (MUSIC) method [21], [22] can localize intrac-
erebral sources in overdetermined contexts. Several variants
were then proposed to improve the MUSIC performances.

On the one hand, time MUSIC-like methods were reported,
such as the extension of the original MUSIC algorithm to fourth-
order (FO) statistics proposed by Porat et al. [19]. The par-
ticularity of this algorithm is to deal with the case of under-
determined source mixtures. Among time MUSIC-like algo-
rithms, sequential approaches [17], [25], [15] should be men-
tioned. They are based both on the SO statistics and the defla-
tion concept introduced to increase localization resolution. The
RapMUSIC algorithm [15], a sequential method based on Fer-
rara’s works [7], is of particular interest. This method takes ad-
vantage of the factored matrix formulation of the transfer re-
lationship between the deep sources and the scalp data to re-
duce computing time by separating quasi-linear from nonlinear
source parameter estimation.

On the other hand, time-frequency (TF) approaches were pro-
posed as reported, for example, by Sekihara et al. [23] and Be-
louchrani et al. [3]. Their objective was to improve the resolu-
tion of the localization in the case of very closed sources with
spectral nonstationary properties. Besides subspace methods,
other localization methods applied to EEG and MEG data were
reported. Readers may refer to the recent review by Michel et al.
[14] for details.

In practice, the physiological signals of interest have nonzero
higher order (HO) statistics. Nevertheless, most of the afore-
mentioned array processing methods are based only on SO sta-
tistics. Therefore, they are restrictive and suboptimal as they do
not take advantage of the information available at HOs. More-
over, TF approaches are not useful for sources with identical
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TF supports. Besides, existing time SO techniques cannot deal
with underdetermined mixtures of sources or with a Gaussian
noise of unknown coherence. HO methods inherently account
for these limitations. However, to date, there is no attempt to
propose an FO method taking advantage of the separability of
the matrix transfer function between the input and output data
and of the deflation concept.

The intent of this paper is to describe a new FO MUSIC-like
method addressing these issues. This method, referred to as
FO-D-MUSIC, is based on the following: 1) the separability of
the data transfer matrix as a function of location and orientation
parameters and 2) the FO virtual array theory [5], and accounts
for the presence of potentially but not completely statistically
dependent sources. Moreover, the FO-D-MUSIC method uses
the deflation concept whose nontrivial extension to FO statis-
tics is also presented in this paper. This paper is organized as
follows. Assumptions about the noisy mixture of sources are
introduced in Section II. SO and FO statistic properties are pre-
sented in Section III. Principles of the proposed algorithm are
described in Section IV which also provides some identifiability
results (Section IV-E). Finally, computer experiments are pre-
sented in Section V.

II. NOTATIONS AND HYPOTHESES

A. Problem Statement

We assume that realizations of an -dimensional random
vector are observed. Besides, vector is given by

(1)

where is a -dimensional random
vector, called source vector, whose observations corre-
spond to the time courses of the current dipoles. Matrix

is the static mixing matrix,
which depends on , that is, the collection of
the multiparameters of the sources. As far as the noise vector

is concerned, it is assumed to be Gaussian and statistically
independent of the source vector. Moreover, some components
of vector can be statistically dependent, i.e., sources can be
partially but not completely correlated (in a wide sense, at order
2 and 4); so, without loss of generality, it is possible to divide
the sources into groups with sources in the th group

, in such a way that sources of the same group are
statistically dependent, while sources in different groups remain
statistically independent. In particular, corresponds to
statistically independent sources whereas corresponds to
the case where all the sources are dependent. Of course, the
parameters are such that . Under these notations,
the observation vector can be rewritten as follows:

(2)

where is the submatrix of corresponding to
the th group of sources and is the corresponding -dimen-
sional subvector of . It is noteworthy that the division of the
sources into groups will be very useful in the following sec-
tions to find the identifiability conditions of the FO-D-MUSIC

method, that is, the maximal number of sources which can be
processed for a given number of observations.

In EEG (or MEG) applications, each source localization
vector of the static mixing matrix represents electrical
potential differences (or magnetic fields) generated from sur-
face electrodes by a current dipole with a unit time course
localized at a given position for a given orientation . Recent
empirical work on closed-form approximations for spherical
and realistic head geometries (see [16] for more details) allow
for the approximation of by the product of an
gain matrix and the orientation vector

(3)

where the multiparameter vector of the consid-
ered dipole includes the nonlinear location parameter and the
quasi-linear orientation parameter .

Although themethodwedevelopedcanbeapplied toboth EEG
and MEG data, and to both spherical and realistic head models,
the following results will be presented in the EEG context using
a spherical head model. In other words, the observed data are as-
sumed, in the sequel, to be electrical potentials. The head is repre-
sentedbythreenestedconcentric spheres (brain, skull, andscalp),
with conductivities chosen as constant and isotropic.

B. Gain Matrix in an EEG Context With Spherical Head Model

In the case of a three-shell spherical head model, the th row
of the gain matrix has the following expression [4],

[16]:

(4)

The th electrode is used as a single common reference
in order to compute potential differences from the potentials
recorded at the other electrode locations. The vector

is given by [16]

(5)

where is the conductivity of the outermost layer of the three-
sphere head model, and parameters and are de-
fined by

(6)

Constants and —the so-called “Berg
parameters” [4]—are only dependent on the three-sphere head
model radii and conductivities . They
should be fitted numerically by minimizing the right side of

given by Zhang [27]. For instance, we computed the
“Berg parameters” for specific radii [20] and conductivities
[24] values, as shown in Table I.
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TABLE I
THE “BERG PARAMETERS” FOR A SPECIFIC 3-SPHERE HEAD MODEL

III. SO AND FO STATISTICS

A. Moments and Cumulants

Recall that the first characteristic function of a random
vector always exists, is continuous, and is defined by

(7)

where denotes the mathematical expectation of . Since
and is continuous, then a small neighbor-

hood of exists, in which does not vanish. Denoting log
the principal branch of the logarithm in the right half-plane, we
define the second characteristic function by

(8)

Moments are the coefficients of the expansion of the first charac-
teristic function about the origin, and cumulants are those
of the second characteristic function . More precisely, one
defines the entries of th-order moment and cumulant arrays of

, respectively, as

(9)

and

(10)

Note that, using the Leonov–Shiryaev formula [13], it is pos-
sible to relate cumulants to moments; in particular, the th-order
cumulant array is related to moment arrays of order smaller than
or equal to . For instance, SO and FO cumulants of a zero-mean
random vector can be computed from moments of in the fol-
lowing way:

(11)

However, in practice, moments of the data are not exactly cal-
culable and have to be estimated from samples of data, in a
way that is completely described in [1, Sec. III.D] and which is
not recalled here.

B. Moment and Cumulant Properties

Moment and cumulant arrays of a real random vector
are symmetric since they are invariant under arbitrary index
permutations.

Another important property of cumulants is that if at least two
variables or groups of variables are statistically independent,
then all cumulants involving these variables are null. The fact
that this property is not shared by moments reinforces the in-
terest in cumulants, especially, in order to process more sources
than observations, as explained in Section IV.

For the sake of convenience, cumulants can be arranged in
a symmetric matrix. Indeed, SO and FO cumulant arrays of a
random vector can take the form of an symmetric
matrix , called covariance matrix, and an sym-
metric matrix , called quadricovariance matrix, respectively

(12)

where and correspond to the th compo-
nent of and , respectively. It is noteworthy that, contrary
to the covariance matrix, the quadricovariance matrix is not gen-
erally positive definite.

Now, let us consider vector given by model (1) where the
noise vector is assumed to be Gaussian and statistically inde-
pendent of the source vector . Then, the multilinearity property
enjoyed by cumulants [13] gives the following relation between
cumulants of and cumulants of :

(13)

where and are the covariance and the
quadricovariance matrices, respectively, of the

source vector , and where is the noise covariance matrix.
For any rectangular matrices and , of size and

, respectively, the Kronecker matrix product
of size is defined by

...
. . .

... (14)

Although matrices and can be written as a function of
the static mixture , they have different algebraic struc-
tures. Consequently, matrix cannot be simply replaced by

in source localization algorithms based on the covariance
matrix. Indeed, given the algebraic structure of the quadricovari-
ance matrix [see (13)], the extension of a covariance-based
method to FO statistics requires to elaborate an algorithm able
to fully exploit the quadricovariance structure instead of the co-
variance one. This is the purpose of Section IV.
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IV. TOWARDS AN FO MUSIC-LIKE APPROACH

A. Some Additional Assumptions

Besides the assumptions given in Section II, the SO MUSIC-
like methods, for instance, MUSIC [7], S-MUSIC [17], and
RapMUSIC [15], need the following hypotheses:

H1) ;
H2) matrix has a full rank equal to .

However, when FO statistics are exploited, assumptions H1) and
H2) can be replaced by the following ones:

A1) ;

A2) , matrices
and have a full rank equal to ;

A3) ;

A4) the matrix
has a full rank equal to ;

where , and were defined in Section II. Note that
under assumptions A1)–A4), matrix given in (13) takes the
following matrix form:

(15)

where is the block diagonal matrix constructed
from the source quadricovariance matrices . The sparsity
level of matrix is straight related to the ratio . In par-
ticular, for sources that are all statistically dependent ,
hypotheses A1)–A4) reduce to the following:

A’1) ;
A’2) matrices and have a

full rank equal to .
In such a case, the matrix is full and equal to the
source quadricovariance matrix . On the other hand, when all
the sources are statistically independent , hypotheses
A1)–A4) reduce to the following:
A’’1) ;
A’’2) matrix and have a full rank

equal to ;
where denotes the columnwise Kronecker product operator,
sometimes referred to as the Khatri–Rao product operator [11]
and where the matrix is now diagonal. Let us recall
that for any rectangular matrices and , of size
and , respectively, the columns of the
matrix are defined as , where and denote
the columns of and , respectively

(16)

According to assumption A 2) and the FO MUSIC metric,
FO-D-MUSIC requires that when all sources are
statistically dependent, which means that since
and are positive, hence assumption A 2). Consequently,
in such a case, FO-D-MUSIC, as SO MUSIC-like methods,
cannot process underdetermined mixtures of sources. However,
when some sources are statistically independent, and more
particularly, when all sources are independent, FO-D-MUSIC
may process underdetermined source mixtures, according to
assumptions A3) and A 1), respectively. Indeed, proof is given
in Section IV-D for independent sources. In brief, statistical

independence implies better performance when FO statistics
are used, especially, in terms of maximum number of processed
sources.

B. From SO to FO MUSIC Metric

At first sight, SO and FO MUSIC-like approaches share sim-
ilarities. However, the extension of MUSIC [7] to FO statis-
tics is not trivial since the covariance and the quadricovariance
matrices have different algebraic structures. Consequently, the
eigenvalue decomposition (EVD) of the covariance matrix and
the EVD of the quadricovariance matrix will give two different
MUSIC metrics. Before presenting the FO MUSIC concept, let
us recall the SO MUSIC one.

Let the EVD of the covariance matrix be given by

(17)

where is the real-valued diagonal matrix of the
strongest eigenvalues of is the matrix of

the associated orthonormalized eigenvectors (called SO signal
eigenmatrix), and is the matrix of the or-
thonormalized eigenvectors (called SO noise eigenmatrix) asso-
ciated with the remaining eigenvalues of . Indeed, since
is a real symmetrical matrix, it can be diagonalized using a real
unitary similarity transformation, namely, . Then,
each column of is orthogonal to each column of . More-
over, , that is, each column vector
of is a linear combination of the SO signal eigenvectors.
Therefore, each column of is orthogonal to each column
of ; so, denoting by the location/orientation parameters of
the th source and the localizing vector appearing at the

th column of matrix , vectors are or-
thogonal to each column of . Thus, the standard SO metric
used in MUSIC [22], S-MUSIC [17], and IES-MUSIC [25] can
be defined as follows:

(18)

Another way to define the SO MUSIC metric consists in using
the SO signal eigenmatrix instead of the SO noise eigenmatrix.
This was done by Mosher and Leahy [15] based on the principal
angles concept [9], giving rise to the following metric:

(19)

Thus, the global minima of , or equivalently, the global
maxima of , correspond asymptotically to the source mul-
tiparameters . However, in the brain source localization con-
text, this implies a 6-D optimization, and therefore, an extremely
high computational complexity. In order to decrease this com-
putational cost, Ferrara and Parks [7] and Mosher and Leahy
[15] took advantage of the separability of the data transfer ma-
trix as a function of nonlinear and linear parameters. More par-
ticularly, when the SO signal eigenmatrix is used, like in Rap-
MUSIC [15], the source locations can be found as the
global maxima of the following metric:

(20)
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which does not depend on the orientation parameter anymore,
and where denotes the maximum eigenvalue of ma-
trix and is the left singular matrix of . The source
orientations can then be derived from the eigenvectors corre-
sponding to the maximum eigenvalues in (20). This way, the
source orientation parameters are deduced from the computa-
tion of the source location parameters, and so the 6-D optimiza-
tion is reduced to a 3-D optimization.

Now, let the EVD of the quadricovariance matrix be given
by

(21)

where is the real-valued diagonal matrix of the
nonzero eigenvalues of is the matrix of
the associated orthonormalized eigenvectors (called FO signal
eigenmatrix), is the real-valued
diagonal matrix of the zero eigenvalues of , and is the

matrix of the associated orthonormalized
eigenvectors (called FO noise eigenmatrix). Indeed, since
is a real symmetrical matrix, it can be diagonalized using a
real unitary similarity transformation, namely, .
Then, each column of is orthogonal to each column of .
However, if the space spanned by the column vectors of ma-
trix is equal to the space spanned by the column vectors of

, a question remains for the space spanned by the column
vectors of matrix . In fact, we can deduce from both ma-
trix decompositions of , given by (15) and (21), respectively,
that , that is, each column vector
of is a linear combination of the FO signal eigenvec-
tors. Consequently, each column of is orthogonal to each
column of ; so, all vectors

of are orthogonal to each column of . Thus, we can
built an FO metric from the FO noise projector
such as

(22)

where the roots correspond asymptotically to the source
multiparameters . However, this computation needs a 6-D op-
timization and it would be interesting to see if the separability
of the data transfer matrix as a function of location and orienta-
tion parameters could be used like with the SO metric in order
to decrease the computational cost; so let us insert (3) in (22),
then becomes

(23)

where . Using Kronecker
product properties, can then be rewritten as follows:

(24)

where and are the FO
source orientation vector and the FO gain matrix, respectively.

Therefore, using Gantmacher’s work [8], criterion (24) can be
concentrated with respect to , leading to

(25)

where and
where denotes the minimum eigenvalue of matrix ;
so parameters can be obtained first by looking
for the roots of the function in defined by the min-
imum eigenvalue of matrix in the metric

, and then by computing the vector asso-
ciated with the th source as the eigenvector corresponding to
the minimum eigenvalue of matrix . An algorithm is pro-
posed in Section IV-C in order to deduce vector from .
Consequently, the orientation parameters are deduced from the
location parameters. This way, the 6-D-optimization problem
is reduced to a 3-D-optimization problem. Since the source
locations found are those for which matrix has a zero
minimum eigenvalue, they can also be computed as the source
locations for which matrix has a deficient rank, that is,
a zero determinant. Consequently, the computational cost can
considerably be reduced if criterion is replaced by the fol-
lowing equivalent criterion:

(26)

where denotes the determinant of matrix . On the one
hand, note that an FO metric based on the correlation between

and instead of the orthogonality be-
tween and could be built, giving birth
to a natural extension of the SO metric (20) used in RapMUSIC
[15] to FO statistics. A potential tool to measure correlation be-
tween two subspaces, as mentioned by Mosher et al. [15], is the
principal angle technique [9] and could be used in order to ob-
tain this new FO MUSIC metric. However, this metric could not
be rewritten with less costly form such as (26). Consequently, at
this stage, since a determinant computation is less costly than an
EVD, especially for high matrix dimensions, criterion (26) is an
attractive FO MUSIC-like metric. On the other hand, a simple
algorithm scheme could be performed in order to decrease the
computational cost of (26). It would consist in the following:
1) only computing the smallest (in number of elements) family
of eigenvectors, either the noise one or the signal one, of
using, for instance, the power method [9] and 2) deducing the
FO noise projector from the previous computation. More
precisely, if , then compute the FO noise eigen-
matrix and take ; otherwise, compute the FO
signal eigenmatrix and take

(27)

C. From SO to FO Deflation Approach

This section reviews the concept of deflation used in
S-MUSIC [17], IES-MUSIC [25], and RapMUSIC [15], and
shows how it can be implemented when FO statistics are used,
more particularly, when criterion (26) is used. Again, this
implementation is not trivial since matrices and have
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different algebraic structures. Indeed, the SO deflation pro-
jector used in IES-MUSIC, or in S-MUSIC and in RapMUSIC,
cannot be applied when FO statistics are used. Moreover, the
choice of this FO deflation projector, especially when sources
are spatially correlated, is discussed hereafter.

As written in Section IV-B, a first idea would consist in
searching for the global maximizers of criterion (20) when
SO statistics are used, or searching for the roots of criterion
(26) when FO statistics are preferred (in the sequel, we will
refer to both approaches as the MUSIC and FO-MUSIC algo-
rithms, respectively). Indeed, if the noise subspace projector
was estimated perfectly, i.e., asymptotically, then the source
locations would be directly found as the global maximizers
of (20) or as the roots of (26), respectively. Nevertheless,
for a finite number of samples, errors in our statistic estimate
reduce (20) and (26) to a function with the following: 1) a single
global optimum that corresponds, for instance, to the source
of maximum signal-to-noise ratio (SNR), and 2) local
optima. Although the global optimum is easily identifiable, it is
more difficult to find the remaining local optima because
nonlinear search techniques may miss shallow or adjacent
peaks and return to a previous peak. Algorithms have been
proposed to solve peak-picking problems [12], but they rapidly
become complex and subjective as the number of sources and
the dimensionality of vectors increase [15]. In order to avoid
this peak-picking problem, a computation strategy based on the
deflation concept was proposed in [15], [17], and [25], when
SO statistics were used. However, as the SO deflation approach
cannot be applied to the FO MUSIC metric (26), we extended
the deflation concept to FO statistics, and more particularly, to
criterion (26), giving rise to the FO-D-MUSIC method.

In S-MUSIC and IES-MUSIC, the location and the
orientation of the first source are determined at the same
time by searching for the global minimum root of (18). The
use of the bijective function of into itself
(i.e., a permutation) is necessary since the source localizing
vectors may be found back, but only in the disorder.
Indeed, as shown in (1), the order in which components of
and associated columns of are set does not change the
expression of . As far as the RapMUSIC and FO-D-MUSIC
methods are concerned, the first source location is de-
termined by searching for the global maximizer of (20) and
the global minimum root of (26) over a sufficiently densely
sampled grid of the nonlinear parameter space, respectively.
Next, the orientation is derived from the source location in
both approaches. On the one hand, RapMUSIC determines
the first source orientation as the normalized eigen-
vector corresponding to the global maximum eigenvalue in
(20). On the other hand, FO-D-MUSIC finds the first FO
source orientation vector as the normalized eigenvector
corresponding to the global minimum eigenvalue of ma-

trix .
Then, the source orientation vector can be computed from

, by the following: 1) reshaping it into an matrix
(the th column of is made up from the con-

secutive elements of as from the th one),
and 2) diagonalizing it. Indeed, the normalized eigenvector

associated with the strongest eigenvalue of is, up to a
sign factor, equal to .

Once the first source has been localized, its contribution can
be removed from the data and the second source multiparameter
vector can be searched for: this defines the first step of
the deflation scheme. More particularly, S-MUSIC builds the
following orthogonal projecting matrix:

(28)

where and applies it to the source lo-
calizing vector before looking for the second source mul-
tiparameter vector from criterion (18). In IES-MUSIC,
the projecting matrix is also applied to the source localizing
vector, but it is not necessarily orthogonal and depends on a
scalar-valued user parameter. Nevertheless, the optimal scalar
is derived in [25] only for the case of two sources, which re-
quires to know the localizing vectors of both sources. Thus,
in practice, IES-MUSIC needs to estimate both source local-
izing vectors with another method first. Moreover, S-MUSIC
and IES-MUSIC are suboptimal since they remove the contri-
bution of the first source only from the source localizing vector.
Had they remove it from the data as well, they could increase
the dimensionality of the noise subspace and, therefore, the es-
timation resolution at each step of the deflation scheme. In Rap-
MUSIC, the orthogonal projecting matrix (28) is applied both to
the source localizing vector and to the SO signal eigenma-
trix before looking for the second source location. It is note-
worthy that this procedure allows the removal of the contribu-
tion of the first source from the data when criterion (20) is used.
Finally, in FO-D-MUSIC, the contribution of the first source
could be removed by applying the orthogonal projecting matrix
(28) both to the source localizing vector and to vector .
Nonetheless, this procedure would imply a new statistical esti-
mation step such as the estimation of the quadricovariance ma-
trix of the processed data, and therefore, an increased computa-
tional cost. Indeed, it is better to remove the contribution of the
first source from the initial quadricovariance matrix instead
of the data . However, contrary to the covariance matrix , the
quadricovariance matrix cannot be multiplied on the left and

on the right by and , respectively, in order to cancel the
contribution of the first source. Indeed, the algebraic structure
of has to be studied to understand how the first source is in-
volved in it. According to (13), the mathematical challenge then
consists in canceling all the column vectors of matrix in-
volving vector , that is, all the column vectors of
of the form or where is an
vector. When the first found source is statistically independent
of all the other sources, that is , the only column vector
of involving is . Therefore, it can be
canceled using the following projecting matrix:

(29)

However, when source is dependent of one or several
other sources, such as sources and , for instance, the
projecting matrix (29) is suboptimal. Vector
of matrix has to be canceled as well as vectors

and
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. This may be achieved by multiplying matrix
on the left by . The proof straightly

ensues from the algebraic structure of a matrix (see
Section IV-A) and properties of the Kronecker product. Con-
sequently, in order to process the general case where source

is potentially correlated with other sources, the location
parameters associated with the th source are then
found as the global minimizer of (26) replacing by

and where is no longer given from the EVD

of matrix , but from the EVD of . Due to
the matrix multiplication, the rank of this last matrix is now
strictly smaller than . Indeed, we decreased the rank of

by removing the contribution of the first source from the
initial statistical matrix , and consequently, we increased
the dimension of noise subspace. Besides, when source is
dependent on one or several other sources, the use of matrix

instead of the orthogonal projecting matrix [see
(29)] allows for a greater increase of the dimension of noise
subspace, which will lead to the best estimation of the second
source location . Once the second source location has been
found, the source orientation vector is computed in the
same way as , replacing by , and the localizing

vector can be built. Eventually, it is
possible to reduce the computational cost of the previous FO
deflation process especially for a large number of observations,
and consequently, large dimensions of . Indeed, the second
source location can be found as the global minimizer of (26)
replacing by and redefining by

(30)

This way, the diagonalization of an matrix is avoided
(time-consuming for large values of ).

Next, the S-MUSIC, IES-MUSIC, RapMUSIC, and FO-D-
MUSIC deflation approaches proceed recursively up to esti-
mate the source parameter vectors . The
IES-MUSIC needs a scalar-valued user parameter, whose op-
timal value is only given for sources in [25]. An exten-
sion of the outlined algorithm to requires more effort and
notation and is not considered in [25]. The S-MUSIC and Rap-
MUSIC methods build the following projecting matrix once the

th source localization has been achieved

(31)

Then, S-MUSIC applies this matrix to the source localizing
vector whereas RapMUSIC applies it both to the source
localizing vector and to the SO signal eigenmatrix be-
fore looking for the th source parameters. Finally, in the FO-D-
MUSIC algorithm, the th source localization step depends on
two cases. If , then it mainly consists in minimizing crite-
rion [see (26)] replacing and by

and the FO noise projector of matrix , re-

spectively, where . Otherwise, if

, the previous procedure holds but matrix is replaced
by the following projecting matrix :

(32)

Indeed, according to (31), for , matrix is a zero
square matrix whereas for , matrix is not de-

fined. Consequently, matrix cannot be used as soon as
is strictly greater than . Note that the case for which

is possible for FO-D-MUSIC because this algorithm, contrary
to S-MUSIC, IES-MUSIC, and RapMUSIC, can process under-
determined mixtures of sources (we will justify this assertion in
Section IV-E). As described in the previous paragraph, the diag-
onalization of matrix for (respec-
tively, for ) can be avoided in order to
reduce the computational cost of the deflation scheme: has
to be constructed using (30) where is replaced by

(respectively, where is replaced by ).

D. Implementation of the FO-D-MUSIC Algorithm

The different steps of the FO-D-MUSIC method are summa-
rized as follows, when observations of the stochastic vector

are available.

Step 1. Fix equal to one, let be equal to the identity
matrix , estimate the FO statistics from
the samples of , and compute an estimate of the
quadricovariance matrix .

Step 2. Build a set of matrices choosing a
sufficiently densely sampled grid of vectors .

Step 3. Compute the EVD of matrix , extract the estimates
and of matrices and , respectively, and compute

the estimate of according to the end of Section IV-B.

Step 4. Compute an estimate of criterion [see (26)]
(using matrix instead of ) over the suitably chosen grid,
and search for its global minimum .

Step 5. Compute vector taking as solution the
eigenvector corresponding to the minimum eigenvalue
of matrix in the metric

.

Step 6. Extract the estimate of the source orientation
vector from . In order to do this, first, reshape
it into a matrix , and second, compute the normalized
eigenvector associated with the largest eigenvalue of .

Step 7. If the rank of matrix is not equal to one, that
is, if the sources are not all localized

1. increment and build vector
;

2. compute matrix equal to if and

to otherwise (see Section IV-C) where
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and are the estimates of and ,
respectively, using instead of ;

3. go back to Step 4) replacing by
and where is achieved from (30) replacing and

by and , respectively;

else stop the procedure.

Note that this implementation requires neither the knowledge
of number nor its estimation, since the deflation procedure is
stopped as soon as the rank of the estimated signal eigenmatrix

is equal to one.

E. Identifiability of the FO-D-MUSIC Method

From the previous sections, it appears that, under assumptions
A1)–A4), the FO-D-MUSIC method can localize brain cur-
rent sources from surface observations. As this new algorithm
may process underdetermined mixtures when some sources are
statistically independent (see Section IV-A), we limit the anal-
ysis to the latter case. Moreover, for the sake of simplicity, we
assume that all sources are statistically independent. In such
a situation, hypotheses A1)–A4) reduce to A 1)–A 2). Then,
vector can be considered as an actual source localiza-
tion vector but for an FO virtual array [5] of electrodes that gives
at each measurement time different virtual scalp data. is
directly related to the pattern of the actual sensors, to the geom-
etry of the actual array of sensors, and to the considered head
model. Consequently, this means that components of
all vectors are redundant components that bring no in-
formation. As a consequence, rows of the matrix
bring no information and are linear combinations of the others,
which means that the rank of cannot be greater than .
In these conditions, matrix may have a rank equal to
only if . Conversely, for an FO virtual array without any
ambiguities up to the order of sources localized at
different positions generate a matrix with a full rank as
long as . Thus, the maximal number of statistically in-
dependent sources able to generate a matrix with rank
is . However, when , an arbitrary vector asso-
ciated with an arbitrary set of localization parameters is nec-
essarily a linear combination of the source localization vectors

, since matrix cannot have a rank
greater than , and all the multiparameter vectors are then
solutions of (22), which does not allow the source localization.
Thus, a necessary condition for the localization of the sources
to be the only solutions of (22) is that . This condition
becomes sufficient for FO virtual arrays with no ambiguities; so
we deduce that the algorithm which looks for the minimizers
of (22) is able to process up to sources, where
can be found as the maximum rank of matrix . However,
when criterion (26) has to be rendered null instead of criterion
(22) for the location of the sources only, and not for other lo-
cations, the matrix has
to be full rank when does not correspond to a source’s loca-
tion. Using the definition of matrix , this means that rank
of matrix cannot be lower than 9, which means that the rank
of has to be greater than or equal to 9. In the presence of

statistically independent sources such that , as the

TABLE II
ESTIMATED NUMBER OF FO VIRTUAL SCALP DATA AS A FUNCTION OFN

rank of is equal to for an FO virtual array without
any ambiguities up to the order of , the maximal number
of sources that may be processed by the FO-D-MUSIC method
has to be lower than . Conversely, for an FO virtual array
without any ambiguities up to the order of sources
having different locations with different orientations and such
that are such that their locations are the only solu-
tions that render null criterion (26). From the previous results,
assuming an FO virtual array with different virtual scalp data
and with no ambiguities up to the order of , we deduce
that FO-D-MUSIC can process up to sources. Al-
though the maximal number of potentially processed sources
is a bit larger when criterion (22) is used, the minimization of
(22) is in practice difficult to realize: it would need to optimize
a six-variable function while in criterion (26) a 3-D minimiza-
tion is sufficient. Note that exact computation of as a func-
tion of for a particular geometry of an actual array of sensors
and a particular head model would require more effort and no-
tation, and it is not considered in this work. However, looking
at the algebraic structure of vector shows that is
smaller than whatever the actual array is. Moreover,
we estimated some values of (reported in Table II) using
Matlab simulations. These values were computed from some
values of and from the head model described in
Section II-B. Mathematically, we built matrix

from (3) to (6) and we estimated its maximum rank with
the help of Matlab. Eventually, whereas the FO virtual array
theory gives a theoretical justification of why FO-D-MUSIC can
process underdetermined mixtures of independent sources, it
also shows why FO-D-MUSIC performs better in the overderde-
termined case when fine resolution is required. Indeed, as men-
tioned previously, instead of using only scalp measurements
as the classical SO MUSIC-like methods, FO-D-MUSIC ex-
ploits different virtual scalp data, where is illustrated in
Table II.

V. COMPUTER RESULTS

In this section, the performances of the FO-D-MUSIC algo-
rithm are compared with two classical SO MUSIC-like methods
(namely, MUSIC [7] and RapMUSIC [15]) in various situations
using computer simulations. In addition, we decided to com-
pute the performances of the FO-MUSIC method, which con-
sists in searching simultaneously for the “best” minimizers
of criterion , in order to show the contribution of the defla-
tion scheme at the FO. As far as the head model is concerned,
we used three nested concentric spheres with radius and con-
ductivities values given in Table I. There were 128 electrodes
placed on the scalp sphere using the 10–5 system [18]. Among
them, only 19 electrodes were used except in Section V-E where
we studied the effect of the number of surface observations by
varying the number of electrodes. Besides, or
independent sources were arranged in the O -plane. Note that
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Fig. 1. Five selected surface EEG data from two deep sources (s and s )
having the same SNR equal to 10 dB.

the origin (O) of the head model was defined as the intersec-
tion of the O-Cz axis ( -axis), the O-T4 axis ( -axis), and the
O-Fpz axis ( -axis). A physiologically relevant model was used
to compute realistic source temporal dynamics. This model con-
sists in a network of coupled neuronal populations. It is de-
scribed in previous reports [26] which showed that temporal
dynamics of simulated signals closely resemble those actually
recorded with intracranial electrodes in epileptic patients [6].
Briefly, the model is a lumped-parameter representation of a set
of interconnected populations of neurons. Each population con-
tains two subsets of neurons (main pyramidal cells and local
interneurons) that interact via excitatory or inhibitory connec-
tions (postsynaptic interactions only). Populations can be cou-
pled either uni- or bidirectionally via excitatory connections.
Model output corresponds to the local field potential generated
at each population of the network. Fig. 1 shows the temporal
dynamics for sources 1 and 2 generated from the model, as well
as five corresponding simulated surface EEG data. Note that the
sources have an estimated kurtosis (FO cumulant normalized by
the square of the variance) equal to 26.5 and 5.5, respectively.
Besides, source orientations were randomly
fixed such as . We considered the background noise
as Gaussian except for Section V-D and as temporally and spa-
tially white except for Section V-C. In addition, we created a
“0.1-mm”-spaced grid in the O -plane and computed the SO
and FO gain matrices for each location on the grid. Eventually,
the simulation results were averaged over realiza-
tions. From one realization to another, both temporal dynamics
and noise were changed while the mixing matrix stayed un-
changed except for Section V-A. SO and FO cumulants were
estimated from 5000 data samples except for Sections V-C and
V-D where 10 000 and 2500 samples were used, respectively.
Simulations were performed using Matlab (V7.0, Release 14).
As an example, when a grid of 100 location points is used,
FO-D-MUSIC takes 360 ms to localize two sources from 18 sur-
face observations, on a standard personal computer (PC) (64-bit
processor, 4-GB RAM). Two criteria were used to quantify the
quality of the source localization. The first one is the probability
of nonlocalization (PNL), that is, the probability that the consid-
ered localization method does not succeed in finding exactly
solutions. For each localization method, the PNL criterion is de-
fined by the ratio between the number of realizations for which

Fig. 2. Effect of dipole location on localization.

Fig. 3. Effect of distance between dipoles on localization.

all the sources are not localized and the total number of realiza-
tions . The second one is the well-known averaged root mean
square error (RMSE), computed for each source and for a given
source localization method. More precisely, for a given number

of realizations for which the considered local-
ization method has succeeded in finding exactly solutions, the
averaged RMSE for source associated with the localization es-
timation RMSE is defined by

RMSE (33)

where is the th source parameter vector estimated
during the th experiment. The minimization over the set

of integers is necessary since the source param-
eter vectors may be recovered only in the disorder.

A. Effect of the Dipole Location on Source Localization

In this section, we studied the behavior of the MUSIC, Rap-
MUSIC, FO-MUSIC, and FO-D-MUSIC methods in the pres-
ence of a unique source. In fact, because we looked for only one
source localization, the nondeflation method was equivalent to
the deflation one, for a given order of statistics. Results are il-
lustrated in Fig. 2 which displays the variations of the RMSE
criterion at the output of the previous algorithms as a func-
tion of the source location (in centimeters) on the -axis. They
show that both FO MUSIC-like methods localize the source
more precisely than both SO MUSIC-like algorithms, wherever
the source is. The PNL criterion was close to zero for all the
methods whatever the source location.

B. Case of Poorly Spatialy Separated Sources

Fig. 3 presents the quantity RMSE RMSE at the
output of the four methods as a function of the distance be-
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Fig. 4. Effect of colored noise on localization of two sources. (a) RMSE criterion. (b) PNL criterion.

tween two sources. One dipole was placed at position
(in centimeters) while the other moved along the

-axis. It clearly appears on Fig. 3 that both FO approaches are
quasi-insensitive to the distance between the dipoles contrary to
SO methods. Indeed, the behavior of the MUSIC algorithm is
very affected as soon as the distance between sources decreases
to below 3.5 cm. Performances of the RapMUSIC are better than
those of MUSIC for low distances, however they remain inferior
to those given by both FO algorithms, whatever the distance is.
As in Section V-A, the PNL was quasi-zero for all the methods
whatever the source distance was.

C. Case of Colored Noise

Both FO algorithms were compared to SO algorithms in the
presence of a Gaussian noise with unknown spatial covariance.
Two sources were positioned in depth such that their location
vectors were given by and ,
respectively. Fig. 4 displays the variations of RMSE and PNL
criteria for the four methods as a function of the noise spatial
covariance factor . Note that the Gaussian noise model em-
ployed in this simulation is the sum of an internal noise and
an external noise of covariance matrices and , re-
spectively, such that

(34)

where are the variance
of total noise per sensor, the spatial covariance factor of noise,
and the th component of the total noise covariance matrix,
respectively.

Fig. 4(a) shows that both SO algorithms are sensitive to a
Gaussian noise with unknown spatial covariance and are af-
fected as soon as the noise spatial covariance increases beyond
0.2. Indeed, theoretically, MUSIC and RapMUSIC require a
perfect knowledge of the noise covariance [22]. On the con-
trary, FO-MUSIC and FO-D-MUSIC, because they use FO cu-
mulants, are asymptotically insensitive to Gaussian noise, re-
gardless of its space/time color. Computer results show that,

although the PNL of RapMUSIC is quasi-zero, only FO-MUSIC
and FO-D-MUSIC localize both sources with precision what-
ever the noise spatial covariance is. Nevertheless, for a given
number of 10 000 samples, only FO-D-MUSIC among both FO
methods succeeds in localizing both sources at each time [see
Fig. 4(b)].

D. Case of Non-Gaussian Noise

Results show that the FO-D-MUSIC algorithm is unaffected
by a Gaussian noise even when only a finite number of data
samples are available [see Fig. 4(a)]. Therefore, we studied the
behavior of FO-D-MUSIC in the presence of an additive non-
Gaussian noise. For that purpose, eye-blink artefacts and elec-
trocardiographic (ECG) real signals were added to simulated
background EEG signals, generated from the model [26]. This
sum of signals was added to the mixture of two sources, located
in depth ( and , respec-
tively). The two sources were chosen close to each other to es-
tablish if the superiority of FO-D-MUSIC over SO MUSIC-like
approaches was still valid in such a case with a non-Gaussian
noise. Results are displayed in Fig. 5 where RMSE and PNL
criteria are represented as a function of both source SNR for
the MUSIC, RapMUSIC, FO-MUSIC, and FO-D-MUSIC al-
gorithms. They show that, contrary to the FO MUSIC-like ap-
proaches, the SO ones do not succeed in localizing both sources
with precision, even for a high SNR of 80 dB. Besides, unlike
FO-MUSIC, FO-D-MUSIC succeeds in localizing both sources
at each time as soon as the SNR increases beyond 40 dB. The
fact that the PNL of FO-MUSIC does not really tend to zero
as the SNR increases could be explained by the small number
of samples (2500) used in this specific simulation. Even with a
maximal SNR, FO-MUSIC might sometimes fail to find a solu-
tion (possibly because of errors in our FO estimates due to the
small number of samples). This justifies the use of FO deflation
scheme when an FO-MUSIC metric is considered. Finally, al-
though the FO-D-MUSIC method seems to be the more efficient
in this simulation, its convergence speed may be reduced by the
presence of a non-Gaussian noise.
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Fig. 5. Effect of non-Gaussian noise on localization of two sources. (a) RMSE criterion. (b) PNL criterion.

Fig. 6. Effect of the number of surface observations on localization of two
sources.

E. Effect of the Number of Surface Observations on Source
Localization

In order to study the effect of the number of surface observa-
tions on the behavior of the four previous MUSIC-like methods,
two close sources were considered (location parameters equal
to and ). In Fig. 6, the
RMSE criterion at the output of RapMUSIC and FO-D-MUSIC
is plotted against the number of surface observations (MUSIC
and FO-MUSIC were not represented because the PNL criterion
is close to one in these two cases). Contrary to FO-D-MUSIC,
the RMSE criterion at the output of RapMUSIC needs at least
63 surface observations (i.e., 64 with the reference channel) to
give accurate results and drops for a smaller number of observa-
tions. We recently reported [2] that FO-D-MUSIC encompasses
MUSIC-like methods when only ten surface electrodes were
considered. Even with 127 EEG channels, RapMUSIC does not
localize the first source as accurately as FO-D-MUSIC. As far
as the PNL criterion at the output of RapMUSIC and FO-D-
MUSIC is concerned, it was quasi-zero. This shows that the use
of the deflation concept at second and fourth orders consider-
ably increases the algorithm ability to localize both sources. In
conclusion, the FO-D-MUSIC method outperforms FO-MUSIC
as well as the classical SO MUSIC-like approaches, especially
when sources are close to each other, independently from the
number of observations used.

VI. CONCLUSION

In this paper, we propose a novel algorithm for brain current
source localization, the FO-D-MUSIC method, based on the
following: 1) the separability of the data transfer matrix as
a function of location and orientation parameters, 2) the FO
virtual array theory, and 3) the deflation concept extended to
FO statistics accounting for the presence of potentially but not
completely statistically dependent sources. Although HO cumu-
lants were considered for a long time as too difficult to estimate,
they can be more useful than SO ones to solve inverse prob-
lems since they allow for the use, in a way, of additional virtual
sensors. This result was shown asymptotically in the presence
of independent sources and reinforced by several simulations,
performed for different numbers of samples, provided that an
FO deflation scheme was used. Indeed, computer results showed
the superiority of FO-D-MUSIC over FO-MUSIC (i.e., similar
version of FO-D-MUSIC without the deflation scheme) and
classical algorithms such as MUSIC [7] and RapMUSIC [15]
for overdetermined mixtures of sources in different situations. In
particular, unlike SO MUSIC-like algorithms, the FO-D-MUSIC
method remained unaffected by a Gaussian noise of unknown
spatial covariance. Moreover, the FO deflation concept used in
FO-D-MUSIC increases the probability of localizing all sources.
In addition, the FO-D-MUSIC approach shows its superiority
specially when a fine resolution is required, for instance, when
sources are close to each other. Besides, at a similar level of per-
formances, our method requires less surface observations than
SO MUSIC-like approaches. Indeed, FO-D-MUSIC exhibits
good performances for reduced number of surface observations
and provides a reliable alternative when high-resolution EEG is
unavailable. Our objective in the forthcoming work is as follows:
1) to test the FO-D-MUSIC ability to localize more sources
than surface observations, and 2) to evaluate it from real EEG
data in epileptic patients in whom strong hypotheses about the
localization of the epileptic zone are available.
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