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Abstract— Motivated by the need for developing a neuro-
navigation system to improve efficacy of intracranial surgical
procedures, a localization system using passive magnetic fields
for real-time monitoring of the insertion process of an external
ventricular drain (EVD) catheter is conceived and developed.
This system operates on the principle of measuring the static
magnetic field of a magnetic marker using an array of magnetic
sensors. An artificial neural network (ANN) is directly used
for solving the inverse problem of magnetic dipole localization
for improved efficiency and precision. As the accuracy of
localization system is highly dependent on the sensor spatial
location, an optimization framework, based on understanding
and classification of experimental sensor characteristics as well
as prior knowledge of the general trajectory of the localization
pathway, for design of such sensing assemblies is described and
investigated in this paper. Both optimized and non-optimized
sensor configurations were experimentally evaluated and results
show superior performance from the optimized configuration.
While the approach presented here utilizes ventriculostomy as
an illustrative platform, it can be extended to other medical
applications that require localization inside the body.

I. INTRODUCTION

In recent years, passive magnetic field-based sensing
systems have been conceived and designed to assist in
many medical localization procedures. In such devices, the
estimated position of a passive magnetic source is derived
from instantaneous magnetic field measurements from a
cluster of tri-axis magnetic field sensors. The advantages
of this methodology are the simplicity, the cost and the
suitability to the medical environment since no external
power supply is required to energize the magnetic field of
the source. These reasons motivated the design of a system
for precise localization during ventriculostmy, a procedure
that traditionally is done blind without visual feedback. The
system composes of a cylindrical permanent magnet (PM)
embedded in an EVD catheter inside the skull and a spatial
array of magnetic sensors outside the body. The context and
the principle has been described in a previous publication
[1].

In many related works, the inverse problem of mag-
netic dipole localization is solved with the implementation
of an algorithm that uses the physics-based dipole model
(DM) [2]–[4]. With this approach, the algorithm accuracy
is affected by the distortions of the magnetic field due to
measurement errors. An alternative is to utilize artificial
neural networks (ANNs) to describe and characterize the
spatially non-linear magnetic field [5], [6]. An ANN is
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a computational model that is inspired by the operation
of biological neural systems that contain an extensive and
massive network of interconnected neurons. In the context
of magnetic field-based localization, it provides a model
free technique to directly associate and map concurrently
measured field measurements by a network of field sensors
to position and orientation of the magnetic source. This direct
approach, which bypasses the solving of the challenging
inverse problem, also has the enhanced advantage of im-
proved localization performance due to the inherent ability
of the ANN computational model to naturally compensate
for distortion and imperfections during magnetic field sensor
measurements.

The PM localization accuracy can be improved by con-
jointly optimizing: the magnetic sensor itself, the local-
ization algorithm, the number of sensors and the spatial
configuration of the sensors. While there has been much
analysis concerning the number of sensors on localization
performance [7], [8], and optimization of sensors position
when using the DM based tracking algorithm [1], so far not
much has been reported or presented on the methodology
that uses ANNs for direct localization.

Hence, this paper focuses on the influence and effects of
spatial arrangement of sensors on localization performance
that uses the direct ANN approach. Key advantage of this
direct approach is that sensor intrinsic characteristics can
be incorporated directly with the ANN. This capability
increases the importance and influence of the spatial design
of the sensing assembly as certain spatial locations are more
advantageous than others. The first step to determine this is
to characterize the experimental data of the sensor through
a sensor error model and implementing a cost function as
described in [9]. This classification and analysis will make
it possible to reveal spatial positions where the sensing
data provided by the sensor are superior than at others.
An experimental validation of the optimization approach is
presented by comparing the localization performance of non-
optimized and optimized sensor layouts during a typical EVD
placement procedure.

II. MATERIALS AND METHOD

For the sensor characterization and analysis, the commer-
cial MAG3110 3-axis magnetic sensor (Freescale, Austin,
TX) is chosen due to its high sensitivity and large sensing
range. The MAG3110 exhibit a resolution of 0.10 µT within
a sensing range of ±1000 µT. As the spatial location of the
sensors play a crucial role in the overall sensing, the follow-
ing section first characterizes and classifies the experimental

978-1-4244-9270-1/15/$31.00 ©2015 IEEE 897

seyffejn
Notiz
EVD Katheter gentutz um Gehirnwasser aus Hohlraum abzulassen. Hirnchirurgie!

seyffejn
Hervorheben

seyffejn
Hervorheben

seyffejn
Hervorheben

seyffejn
Hervorheben

seyffejn
Hervorheben

seyffejn
Hervorheben

seyffejn
Notiz
Genau was ich vorhabe! Mit Roboterarm in Hirn stechen und position der Spitze ermitteln. An Spitze sitzt ein Permanentmagnet und auf den Schädel werden mehrere magn. Sensoren aufgeklebt.Die Präzision liegt hier zwischen 1 und 4 mm. Allerdings ist der abgedeckte Bereich lediglich 4x4x2cm klein (weiß nicht wie tief man mit max Nadel rein muss).



sensing error of the commercial sensor and then uses the
result for enhanced spatial design of the sensing assembly.

A. Magnetic Sensor Precision Volumetric Characterization

To quantify and characterize the sensor measurement error,
a 6-axis high-precision articulated robotic arm (VS-068,
Denso Robotics, Aichi, Japan) is employed. As shown in
Figure 1, a grade N52 Neodymium (Nd-Fe-B) magnet with
length of 9.5 mm and diameter of 3.2 mm is attached
at the end of the end-effector of the arm. The tip of the
robotic arm was accurately commanded to specific locations
in a discretized 3D volumetric space above a stationary
MAG3110 sensor mounted onto the fixed reference frame.
This volumetric space is constructed with the origin coincid-
ing with the sensor location and spans x = [0, 26 mm], y
= [0, 26 mm], z = [20, 60 mm] and the spacing between
adjacent sensing points in the volume is 2 mm. Only a
quadrant of the volume above the sensor is characterized
because of symmetry of magnetic fields. The robotic arm has
a positional repeatability of ± 0.02 mm. The measurements
of all 3 axis of the magnetic field sensor, associated with each
spatial location, is repeated 10 times. This data at each spatial
location is not collected sequentially to avoid measurement
bias.

For each point of the mapped space, the precision of the
sensor measurement is calculated using the definition of the
normalized version of the standard deviation expressed as:

STDnork =
1

B̄k

√√√√ 1

n− 1

n∑
i=1

(Bi,k − B̄k)2 , (1)

Bi,k being the value of the magnetic flux density along
the k axis (1=x, 2=y, 3=z) of the ith measurement and B̄k

being the arithmetic mean of the n samples considered.
Figure 1 shows the normalized standard deviation of the

MAG3110 sensor magnetic flux density values for each point
of the mapped space. Larger standard deviations, which has
a propensity for poorer localization errors are denoted by
larger and lighter circles. As the data suggest, Bx and By has
a noticeable poorer precision from the higher measurement
standard deviation. In particular, Bz shows almost uniform
precision throughout the 3D volumetric space while Bx

shows significance reduction in precision (or increase in the
measurement standard deviation) along the y-axis once a
height of z = 40 mm is attained.

The data accumulated in Figure 1, enables to build, for
each k axis of the sensor, a generalized fitted function which
associates a the relative location between the sensor and PM
with the measured experimental sensing precision:

pk(x, y, z) = STDnork (2)

This relation will then be used in the sensors spatial
positioning optimization algorithm that is described further.

B. Sensors Design Optimization

Regarding the ventriculostomy intervention the magnetic
field-based sensing device for tracking the EVD catheter will

x (mm)

10

0

N

S

Bz

By

Z

Y

X
00

10 10

STDnor Bx

z 
(m

m
)

x (mm)

y (mm)

20

10

15

5

20

30

40

50

60

20
20

10

0

00

10 10

STDnor By

z 
(m

m
)

x (mm)

y (mm)

10

5

7.5

2.5

20

30

40

50

60

20
20

10

0

00

10 10

STDnor Bz

z 
(m

m
)

x (mm)

y (mm)

0.8

0.4

0.6

0.2

20

30

40

50

60

20
20

MAG3110

PM

Bx

Fig. 1. Mapping of the MAG3110 measurement precision. The PM is
positioned by the robotic arm to each discretized point of the 3D space
and measuring the magnetic flux density as detected by the sensor. This
measurement is done 10 times for each spatial location. On the plots of
the normalized standard deviation of Bx, By , Bz , the larger the dots the
higher the magnitude of the standard deviation.

incorporate a 12 mm hole (to facilitate catheter insertion)
within a 40 mm diameter circular area on a planar surface
for implementation of the sensors. The sensing device is
normal to the skull surface and its origin coincides with the
catheter insertion burr hole in the skull. The issue now is
how to place the sensors into this planar surface to minimize
the effects of the measurement variations as characterized
in the previous section. The approach undertaken here is
to use reference catheter insertion trajectories and compute
the STDnor of the measured field throughout the entire
trajectory by placing the sensors on a 1 x 1 mm discretized
grid on the planar surface as described in Figure 2. This
is applicable because ventriculostomy insertion trajectories
are reported in literature with relatively low variance and
have been used in the past to evaluate sensor configuration
performance [1].

For each possible spatial location on the surface in Fig-
ure 2 which denote all possible sensor installation, a penalty
fitness value c can be defined for each location as:

c(i) =

n∑
j=1

3∑
k=1

pk(xj , yj , zj) (3)

where i, is the label of the discrete position of the sensors
in the sensor planar area. (xj , yj , zj) is the PM position
relative to the sensor, along the reference catheter trajectories
with a total number of n points. p is the STDnor of
the sensor along its k axis calculated as defined in (2).
Consequently the best sensor positions are the locations with
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Fig. 2. Evaluating the sensing measurement variation from tracking a
reference catheter insertion trajectory at each possible sensor location.
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Fig. 3. Fitness penalty value of all possible sensor locations on the sensor
board. The grey area is kept clear for the sensors associated electronics on
the PCB breakout. O is the origin of the board to be coincident with the
burr hole entry point.

ANN architecture
Sensors measurement Magnet position

(x,y,z)

Bx1

By1

Bz1

Bxn

Byn

Bzn

Fig. 4. ANN-based direct magnetic field-based sensing scheme. The
sensors data are input in the model and associated to the output (position
estimates of the PM) through the neural network.

low penalty fitness values.
Figure 3 shows the computed penalty fitness value at each

possible sensors position on the circular sensor plane. It
reveals distinct areas where the penalty fitness values are
high (along the y-axis where x = 0 mm as well as along
the x-axis where y = 0 mm) and placement of the sensors at
these locations should be avoided as much as possible.

III. EXPERIMENTAL RESULTS

Based on the results illustrated in Figure 3, two distinct
sensing systems were designed. One was a non-optimized
arrangement where eight sensors are arranged in a regular
circular pattern around the insertion hole and an optimized
configuration where eight sensors have been specially placed
to avoid high penalty fitness values in Figure 3. A visual
comparison of both designs are shown in Table I. The
sensing mechanism, shown in Figure 4, utilized uses the
direct approach of mapping magnetic field measurements
directly to position of the PM from the sensor assembly with
a 20 hidden network layer ANN. For numerical computation,
MATLAB’s neural network toolbox (Mathworks, Natick,
MA) is used to design and train the ANN for direct sensing.

Robot arm

Permanent Magnet

Localization device Brain phantom

Magnetic sensors

Fig. 5. Experimental Setup for evaluating optimized and non-optimized
sensor arrangements using the 6-axis robotic arm.

The localization accuracy of both optimally and non-
optimally designed systems are evaluated by commanding
the robotic arm to replicate four different EVD insertion
trajectories composed of 313 points. To achieve this, the
following experimental setup that consists of the 6-axis
Denso Robot arm, the PM attached to the end-effector,
the localization sensor assembly and a custom made brain
phantom shown in Figure 5 is used. The brain phantom
is made of Ecoflexr0030 (Smooth On Inc, Macungie PA)
material and provides a good approximation of the average
mechanical behaviour of brain tissues [10]. A microcontroller
process the 8 MAG3110 sensors data and communicates with
a PC via serial interface.

Figure 6 illustrates the differences between the actual
position of the PM (from the robotic arm) and the estimated
position from the measurement of the magnetic sensors
through the ANN when using the optimized sensor configura-
tion. To quantify the trajectory errors further, the root-mean-
squared-error (RMSE) between the observed and estimated
positions for both systems are tabulated in Table I. With
an RMSE of just 1.0 mm throughout all 4 trajectories, the
optimized sensor configuration clearly outperforms the non-
optimized layout which has an RMSE of almost double at
1.6 mm. Even the maximum error was significantly lower
for the optimized design (at 1.8 mm compared to 4.1 mm).

In addition, from Figure 6, the euclidean error at each po-
sition estimate for both sensor designs can be computed and
categorized into a histogram. To visualize how well the PM
positions are estimated, the distribution of the euclidean error
for both sensor designs are consolidated in Figure 7 for direct
comparison. As shown in the figure, all the euclidean errors
for the optimized sensor configuration are distributed from
0.1 to 1.8 mm. Whereas the distribution for the euclidean
error for the non-optimized sensor configuration is much
wider, going up all the way to 4.1 mm. This reinforces the
superior performance of the optimized sensor layout, which
provides significant improvement in sensing performance
with no change in the number of sensors used.
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TABLE I
LOCALIZATION ACCURACY OVER THE SENSORS CONFIGURATION

Layout Non optimized Optimized

RMSE (mm) 1.6 1.0

Max. Error (mm) 4.1 1.8
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Fig. 6. Spatial localization efficiency with four EVD placement paths.
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Fig. 7. Distribution of the Euclidean Error throughout the four EVD paths.

IV. DISCUSSION AND CONCLUSION

It is noted that in this paper assumed each sensor in
the spatial assembly shared the same intrinsic characteristics
in deriving and numerically evaluating the optimal sensor
configuration. Of course in real applications, this theoretical
assumption will most likely not hold and will inevitably af-
fect the resultant localization performance. This means indi-
vidual characterization each sensor could potentially and will
most likely result in even better localization performance.
However experimental results have illustrated that, although
this may be true, the effects may not be as significant as
the improvements afforded by carefully designing the sensor
spatial assembly.

As ventriculostomy is a medical procedure in which the

insertion trajectory does not deviate significantly from one
patient to another due to the low variance of the location of
the ventricles from the burr hole, the design of the sensor spa-
tial configuration can be optimized using a set of reference
insertion catheter trajectories with prevalent orientations.
However, the framework described can be applied for any
other path as well other insertion instruments. Experimental
validation have also been conducted ex vivo on an anatomical
phantom model with representative catheter insertion paths.

From the experimental results and analysis, it is found that
compared to blindly adding more sensors, the optimization of
the arrangement of the sensors should be of a priority when
seeking to enhance localization performance. This finding
reiterates the importance of sensor design for magnetic
localization system and a sensor design framework based on
understanding and classification of the experimental intrinsic
characteristics of the sensors was presented and evaluated.
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